Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Real-space charge distribution of the cobalt ion and its relation with charge and spin states

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The charge state of an ion provides a simplified electronic picture of the bonding in compounds, and heuristically explains the basic electronic structure of a system. Despite its usefulness, the physical and chemical definition of a charge state is not a trivial one, and the essential idea of electron transfer is found to be not a realistic explanation. Here, we study the real-space charge distribution of a cobalt ion in its various charge and spin states, and examine the relation between the formal charge/spin states and the static charge distribution. Taking the prototypical cobalt oxides, La/SrCoO\(_3\), and bulk Co metal, we confirm that no prominent static charge transfer exists for different charge states. However, we show that small variations exist in the integrated charges for different charge states, and these are compared to the various spin state cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Weller, T. Overton, J. Rourke, F. Armstrong, Inorganic Chemistry (Oxford University Press, Oxford, 2014)

    Google Scholar 

  2. H. Raebiger, S. Lany, A. Zunger, Nature 453, 763 (2008)

    Article  ADS  Google Scholar 

  3. M. Jansen, U. Wedig, Angew. Chem. Int. Ed 47, 10026 (2008)

    Article  Google Scholar 

  4. W.E. Pickett, Y. Quan, V. Pardo, J. Phys. Condens. Matter 26, 274203 (2014)

    Article  Google Scholar 

  5. P. Karen, Angew. Chem. Int. Ed. 54, 4176 (2015)

    Article  Google Scholar 

  6. A. Walsh, A.A. Sokol, J. Buckeridge, D.O. Scanlon, C.R.A. Catlow, Nat. Mater. 17, 958 (2018)

    Article  ADS  Google Scholar 

  7. W. Luo, A. Franceschetti, M. Verela, J. Tao, S.J. Pennycook, S.T. Pantelides, Phys. Rev. Lett. 99, 036402 (2007)

    Article  ADS  Google Scholar 

  8. R. Resta, Nature 453, 735 (2008)

    Article  ADS  Google Scholar 

  9. P.H.-L. Sit, R. Car, M.H. Cohen, A. Selloni, Inorg. Chem. 50, 10259 (2011)

    Article  Google Scholar 

  10. P. Pegolo, F. Grasselli, S. Baroni, Phys. Rev. X 10, 041031 (2020)

    Google Scholar 

  11. F. Grasselli, S. Baroni, Nat. Phys. 15, 967 (2019)

    Article  Google Scholar 

  12. L. Jiang, S.V. Levchenko, A.M. Rappe, Phys. Rev. Lett. 108, 166403 (2012)

    Article  ADS  Google Scholar 

  13. R. Resta, D. Vanderbilt, Theory of Polarization: A Modern Approach, Physics of Ferroelectrics: A Modern Perspective (Springer, Berlin, 2007), pp. 31–68

    Book  Google Scholar 

  14. R.D. Shannon, C.T. Prewitt, Acta Crystallogr. B 25, 925 (1969)

    Article  Google Scholar 

  15. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  16. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  17. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  18. V. Křápek, P. Novák, J. Kuneš, D. Novoselov, D.M. Korotin, V.I. Anisimov, Phys. Rev. B 86, 195104 (2012)

    Article  ADS  Google Scholar 

  19. H. Park, R. Nanguneri, A.T. Ngo, Phys. Rev. B 101, 195125 (2020)

    Article  ADS  Google Scholar 

  20. C.N.R. Rao, Md Motin, M.M. Seikh, C. Narayana, Top. Curr. Chem. 234, 1 (2004)

    Article  Google Scholar 

  21. R.H. Potze, G.A. Sawatzky, M. Abbate, Phys. Rev. B 51, 11501 (1995)

    Article  ADS  Google Scholar 

  22. J. Kuneš, V. Křápek, N. Parragh, G. Sangiovanni, A. Toschi, A.V. Kozhevnikov, Phys. Rev. Lett. 109, 117206 (2012)

    Article  ADS  Google Scholar 

  23. Y.Y. Chin, H.J. Lin, Z. Hu, C.Y. Kuo, D. Mikhailova, J.M. Lee, S.C. Haw, S.A. Chen, W. Schnelle, H. Ishii, N. Hiraoka, Y.-F. Liao, K.-D. Tsuei, A. Tanaka, L.H. Tjeng, C.-T. Chen, J.-M. Chen, Sci. Rep. 7, 3656 (2017)

    Article  ADS  Google Scholar 

  24. Z. Hu, H. Wu, M.W. Haverkort, H.H. Hsieh, H.-J. Lin, T. Lorenz, J. Baier, A. Reichl, I. Bonn, C. Felser, A. Tanaka, C.T. Chen, L.H. Tjeng, Phys. Rev. Lett. 92, 207402 (2004)

    Article  ADS  Google Scholar 

  25. X.-F. Shen, Y.-S. Ding, J. Liu, Z.-H. Han, J.I. Budnick, W.A. Hines, S.L. Suib, J. Am. Chem. Soc 127, 6166 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

I thank Sooran Kim, Kyoo Kim, Beom Hyun Kim, K.-T. Ko, and Jeongwoo Kim, for fruitful discussions. This work was supported by research funds from Kunsan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bongjae Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B. Real-space charge distribution of the cobalt ion and its relation with charge and spin states. J. Korean Phys. Soc. 78, 302–306 (2021). https://doi.org/10.1007/s40042-021-00066-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00066-6

Keywords