Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Simulation of classical axion electrodynamics using COMSOL multiphysics

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The axion is a hypothetical particle motivated to address the strong CP problem, and is one of the appealing dark matter candidates. Numerous experimental searches for dark matter axions have been proposed relying on their coupling with photons. The classical equations of motion for the axion-photon coupling are well known but need to be fully computed for complex experimental setups. The partial differential equations of axion electrodynamics can be numerically solved using finite element methods. In this work, we simulate axion electrodynamics using COMSOL Multiphyics, a commercially available simulation software, for various experimental schemes, including the dish antenna haloscope, cavity haloscope, dielectric haloscope, and axion-photon regeneration. We show that the numerical results are in good agreement with the analytical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R.D. Peccei, H.R. Quinn, Phys. Rev. Lett. 38, 1440 (1977)

    Article  ADS  Google Scholar 

  2. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978)

    Article  ADS  Google Scholar 

  3. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978)

    Article  ADS  Google Scholar 

  4. J. Preskill, M.B. Wise, F. Wilczek, Phys. Lett. B 120, 127 (1983)

    Article  ADS  Google Scholar 

  5. L.F. Abbott, P. Sikivie, Phys. Lett. B 120, 133 (1983)

    Article  ADS  Google Scholar 

  6. M. Dine, W. Fischler, Phys. Lett. B 120, 137 (1983)

    Article  ADS  Google Scholar 

  7. J.E. Kim, Phys. Rev. Lett. 43, 103 (1979)

    Article  ADS  Google Scholar 

  8. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 166, 493 (1980)

    Article  ADS  Google Scholar 

  9. A.P. Zhitnitsky, Y.F. Novosibirsk, Sov. J. Nucl. Phys. 31, 497 (1980)

    Google Scholar 

  10. M. Dine, W. Fischler, M. Srednicki, Phys. Lett. B 104, 199 (1981)

    Article  ADS  Google Scholar 

  11. F. Wilczek, Phys. Rev. Lett. 58, 1799 (1987)

    Article  ADS  Google Scholar 

  12. P. Sikivie, Phys. Rev. D 32, 2988 (1985)

    Article  ADS  Google Scholar 

  13. A. Caldwell et al. (MADMAX Working Group), Phys. Rev. Lett. 118, 091801 (2017)

    Article  ADS  Google Scholar 

  14. D. Horns et al., J. Cosmol. Astropart. Phys. 04, 016 (2013)

    Article  ADS  Google Scholar 

  15. K.A. van Bibber et al., Phys. Rev. Lett. 59, 759 (1987)

    Article  ADS  Google Scholar 

  16. COMSOL Multiphysics® v. 5.2. www.comsol.com. COMSOL AB, Stockholm, Sweden

  17. J.I. Read, J. Phys. G: Nucl. Part. Phys. 41, 063101 (2014)

    Article  ADS  Google Scholar 

  18. S. Borsanyi et al., Nature 539, 69 (2016)

    Article  ADS  Google Scholar 

  19. Y. Kim et al., Phys. Dark Universe 26, 100362 (2019)

    Article  Google Scholar 

  20. A. AlShirawi et al. (DMRadio Collaboration), arXiv:2302.14084 (2023)

  21. D. Kim et al., J. Cosmol. Astropart. Phys. 03, 066 (2020)

    Article  ADS  Google Scholar 

  22. A.J. Millar et al., J. Cosmol. Astropart. Phys. 01, 061 (2017)

    Article  ADS  Google Scholar 

  23. S. Knirck et al., J. Cosmol. Astropart. Phys. 08, 026 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. K. Ehret et al., Phys. Lett. B 689, 149 (2010)

    Article  ADS  Google Scholar 

  25. R. Ballou et al., Phys. Rev. D 92, 092002 (2015)

    Article  ADS  Google Scholar 

  26. P. Sikivie, D.B. Tanner, K.A. van Bibber, Phys. Rev. Lett. 98, 172002 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (IBS-R017-D1-2023-a00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junu Jeong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, J., Kim, Y., Bae, S. et al. Simulation of classical axion electrodynamics using COMSOL multiphysics. J. Korean Phys. Soc. 83, 161–167 (2023). https://doi.org/10.1007/s40042-023-00808-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00808-8

Keywords