Abstract
Climate change poses severe threats to humanity, necessitating research that analyzes CO2 emissions. This study analyzed the impact of changes in traffic volume and floating population due to COVID-19 for 2018, 2020, and 2022 to assess the impact of human activity on CO2 emissions. Notably, 2020 was of particular interest due to the COVID-19 pandemic. Radiocarbon dating was employed to examine atmospheric CO2 emissions and leaf samples were collected for CO2 emission analysis using accelerator mass spectrometry. The implementation of social distancing in 2020 resulted in a significant increase in the Δ14C values across Gyeongju, especially in popular tourist destinations, compared to the values recorded in 2018. As COVID-related restrictions were gradually relaxed, a noteworthy decrease in Δ14C values was observed across Gyeongju. The observed pattern in 2022 was strikingly similar to that of 2018. To determine whether changes in traffic volume influenced the Δ14C values, we investigated the correlation between human activity and CO2 emissions.
Similar content being viewed by others
Abbreviations
- AMS:
-
Accelerator mass spectrometry
- IC:
-
Interchange
References
C. Le Quéré, R. Moriarty, R.M. Andrew, G.P. Peters, P. Ciais, P. Friedlingstein, S.D. Jones, S. Sitch, P. Tans, A. Arneth, T.A. Boden, L. Bopp, Y. Bozec, J.G. Canadell, L.P. Chini, F. Chevallier, C.E. Cosca, I. Harris, M. Hoppema, R.A. Houghton, J.I. House, A.K. Jain, T. Johannessen, E. Kato, R.F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C.S. Landa, P. Landschützer, A. Lenton, I.D. Lima, G. Marland, J.T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M.R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J.E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B.D. Stocker, A.J. Sutton, T. Takahashi, B. Tilbrook, G.R. van der Werf, N. Viovy, Y.P. Wang, R. Wanninkhof, A.Wiltshire, N. Zeng, Earth Syst. Sci. Data (2015) 10.5194/essd-7-47-2015
C. Le Quéré, R.B. Jackson, M.W. Jones, A.J.P. Smith, S. Abernethy, R.M. Andrew, A.J. De-Gol, D.R. Willis, Y. Shan, J.G. Canadell, P. Friedlingstein, F. Creutzig, G.P. Peters, Nat. Clim. Change (2020). https://doi.org/10.1038/s41558-020-0797-x
International Energy Agencym Global CO2 emissions rose less than initially feared in 2022 as clean energy growth offset much of the impact of greater coal and oil use. https://www.iea.org/news/global-co2-emissions-rose-less-than-initially-feared-in-2022-as-clean-energy-growth-offset-much-of-the-impact-of-greater-coal-and-oil-use. Accessed 2 Mar 2023
Traffic Monitoring System, Data for 2018, 2019, 2020, 2021, and 2022 (2023). https://www.road.re.kr/main/main.asp.
Ministry of Land, Infrastructure and Transport, Data for 2018, 2019, 2020, 2021, and 2022. (2023) http://www.molit.go.kr/portal.do.
Ministry of Culture, Sports, and Tourism, Data for 2018, 2019, 2020, 2021, and 2022. (2023) https://stat.mcst.go.kr/portal/main.
X.T. Xi, X.F. Ding, D.P. Fu, L.P. Zhou, K.X. Liu, Chin. Sci. Bull. (2011). https://doi.org/10.1007/s11434-011-4453-8
G.M. Santos, A.I.P. Conf, Proc. (2012). https://doi.org/10.1063/1.3688819
S. Djuricin, X. Xu, D.E. Pataki, J. Geophys. Res. (2012). https://doi.org/10.1029/2011JD017284
J.C. Turnbull, L.G. Domingues, N. Turton, Environ. Sci. Technol. (2022). https://doi.org/10.1021/acs.est.1c07994
C.L. Bennett, R.P. Beukens, M.R. Clover, H.E. Gove, R.B. Liebert, A. Litherland, K.H. Purser, W.E. Sondheim, Science (1977). https://doi.org/10.1126/science.198.4316.508
R. Hellborg, G. Skog, Mass Spectrom. Rev. (2008). https://doi.org/10.1002/mas.20172
D. Lal, A.J.T. Jull, Radiocarbon (2001). https://doi.org/10.1017/S0033822200041394
W.M.E. Mook, Environmental Isotopes in the hydrological cycle: principles and applications. UNESCO/ IAEA Series. (2001) http://www-naweb.iaea.org/napc/ih/documents/global_cycle/Environmental%
P Povinec, L.L.W, Kwong, J Kaizer, M Molnár, H Nies, L Palcsu, L Papp, M.K. Pham P Jean-Baptiste, J. Environ. Radioact (2017) https://doi.org/10.1016/j.jenvrad.2016.02.027.
H.E. Suess, Radiocarbon concentration in modern wood. Science (1955). https://doi.org/10.1126/science.122.3166.415.b
P.P Tans, A.F.M De Jong, W.G Mook, Nature (1979) https://doi.org/10.1038/280826a0.
A. Pazdur, T. Nakamura, S. Pawelczyk, J. Pawlyta, N. Piotrowska, A. Rakowski, B. Sensula, M. Szczepanek, Radiocarbon (2007). https://doi.org/10.1017/S003382220004265X
D. Bozhinova, M. Combe, S.W.L. Palstra, H.A.J. Meijer, M.C. Krol, W. Peters, Glob. Biogeochem. Cycles (2013). https://doi.org/10.1002/gbc.20065
I. Levin, U. Karstens, Tellus (2007). https://doi.org/10.1111/j.1600-0889.2006.00244.x
S.H. Lee, S.H. Park, M.J. Kong, Y.S. Kim, Nucl. Instrum. Methods Phys. Res. B (2020). https://doi.org/10.1016/j.nimb.2019.12.027
S.H. Lee, M.J. Kong, S.G. Lee, S.H. Park, Y.S. Kim, Radiocarbon (2022). https://doi.org/10.1017/RDC.2022.77
Korean Meteorological Association, (2023) http://weather.go.kr.
F. Brock, T. Higham, P. Ditchfield, C.B. Ramsey, Radiocarbon (2010). https://doi.org/10.1017/S0033822200045069
A.T. Aertz-Bijma, J. van der Plicht, H.A.J. Meijer, Radiocarbon 43, 293–298 (2001). https://doi.org/10.1017/S0033822200038133
M. Němec, L. Wacker, H. Gäggeler, Radiocarbon (2010). https://doi.org/10.1017/S0033822200046464
Gyeongsangbuk-Do Culture and Tourism Organization, Data for 2018, 2019, 2020, 2021, and 2022. (2023) https://www.gtc.co.kr/.
Korea Culture and Tourism Institute, Data for 2018, 2019, 2020, 2021, and 2022. (2023) https://know.tour.go.kr/stat/visitStatDis/table.do.
Korea Expressway Corporation, Data for 2018, 2019, 2020, 2021, and 2022. (2023) https://www.ex.co.kr/.
Korea Tourism Organization Datalab, Data for 2018, 2019, 2020, 2021, and 2022. (2023) https://datalab.visitkorea.or.kr/.
G.M. Santos, F.M. Oliveira, J. Park, A.C. Sena, J.B. Chiquetto, K.D. Macario, C.S. Grainger, Assessment of the regional fossil fuel CO2 distribution through Δ14C patterns in ipê leaves: The case of Rio de Janeiro state, Brazil. City Environ.Interact. 1, 100001 (2019). https://doi.org/10.1016/j.cacint.2019.06.001
G.M. Santos, D. Granato-Souza, A.C. Barbosa, R. Oelkers, L. Andreu-Hayles, Quatern. Geochronol. (2020). https://doi.org/10.1016/j.quageo.2020.101079
R. Sharma, R.K. Kunchala, S. Ojha, P. Kumar, S. Gargari, S. Chopra, J. Environ. Sci. (2023). https://doi.org/10.1016/j.jes.2021.11.003
L. Wacker, M. Christl, H.A. Synal, Methods Phys. Res. B (2010). https://doi.org/10.1016/j.nimb.2009.10.078
H. Godwin, Nature (1962). https://doi.org/10.1038/195984a0
M. Stuiver, H.A. Polach, Radiocarbon (1977). https://doi.org/10.1017/S0033822200003672
K.E. Stenström, G. Skog, E. Georgiadou, J. Genberg, A. Johansson, A Guide to Radiocarbon Units and Calculations Department of Physics Internal Report 1–17 (Lund University, 2011).
S.E. Trumbore, C.A. Sierra, C.E. Hicks Pries, in Radiocarbon and climate change. ed. by E. Schuur, E. Druffel, S. Trumbore (Springer Cham, Springer International Publishing, 2016), pp.45–82. https://doi.org/10.1007/978-3-319-25643-6_3
K. Hippe, N.A. Lifton, Radiocarbon (2014). https://doi.org/10.2458/56.17917
Integrated Carbon Observation SystemData for 2018, 2020, and 2022. (2023) https://www.icos-cp.eu/.
International Foundation HFSJG, Activity Report 2022. Available at : https://www.hfsjg.ch/.
Korea Railroad Corporation, Data for 2018, 2020, and 2022. (2023) https://info.korail.com/info/index.do.
M. Barth, K. Boriboonsomsin, Transp. Res. Rec. (2008). https://doi.org/10.3141/205
Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF), of the Ministry of Science and ICT, Korea vide grant no. 2022R1A2C2006213.
Funding
This study was supported by the National Research Foundation of Korea (NRF), Ministry of Science and ICT, Korea (Grant No. 2022R1A2C2006213).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lee, SW., Park, SH. & Kim, YS. The influence of human activity on regional radiocarbon characteristics using accelerator mass spectrometry during the COVID-19 period. J. Korean Phys. Soc. 84, 439–445 (2024). https://doi.org/10.1007/s40042-024-01027-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40042-024-01027-5