Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The influence of human activity on regional radiocarbon characteristics using accelerator mass spectrometry during the COVID-19 period

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Climate change poses severe threats to humanity, necessitating research that analyzes CO2 emissions. This study analyzed the impact of changes in traffic volume and floating population due to COVID-19 for 2018, 2020, and 2022 to assess the impact of human activity on CO2 emissions. Notably, 2020 was of particular interest due to the COVID-19 pandemic. Radiocarbon dating was employed to examine atmospheric CO2 emissions and leaf samples were collected for CO2 emission analysis using accelerator mass spectrometry. The implementation of social distancing in 2020 resulted in a significant increase in the Δ14C values across Gyeongju, especially in popular tourist destinations, compared to the values recorded in 2018. As COVID-related restrictions were gradually relaxed, a noteworthy decrease in Δ14C values was observed across Gyeongju. The observed pattern in 2022 was strikingly similar to that of 2018. To determine whether changes in traffic volume influenced the Δ14C values, we investigated the correlation between human activity and CO2 emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AMS:

Accelerator mass spectrometry

IC:

Interchange

References

  1. C. Le Quéré, R. Moriarty, R.M. Andrew, G.P. Peters, P. Ciais, P. Friedlingstein, S.D. Jones, S. Sitch, P. Tans, A. Arneth, T.A. Boden, L. Bopp, Y. Bozec, J.G. Canadell, L.P. Chini, F. Chevallier, C.E. Cosca, I. Harris, M. Hoppema, R.A. Houghton, J.I. House, A.K. Jain, T. Johannessen, E. Kato, R.F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C.S. Landa, P. Landschützer, A. Lenton, I.D. Lima, G. Marland, J.T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M.R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J.E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B.D. Stocker, A.J. Sutton, T. Takahashi, B. Tilbrook, G.R. van der Werf, N. Viovy, Y.P. Wang, R. Wanninkhof, A.Wiltshire, N. Zeng, Earth Syst. Sci. Data (2015) 10.5194/essd-7-47-2015

  2. C. Le Quéré, R.B. Jackson, M.W. Jones, A.J.P. Smith, S. Abernethy, R.M. Andrew, A.J. De-Gol, D.R. Willis, Y. Shan, J.G. Canadell, P. Friedlingstein, F. Creutzig, G.P. Peters, Nat. Clim. Change (2020). https://doi.org/10.1038/s41558-020-0797-x

    Article  Google Scholar 

  3. International Energy Agencym Global CO2 emissions rose less than initially feared in 2022 as clean energy growth offset much of the impact of greater coal and oil use. https://www.iea.org/news/global-co2-emissions-rose-less-than-initially-feared-in-2022-as-clean-energy-growth-offset-much-of-the-impact-of-greater-coal-and-oil-use. Accessed 2 Mar 2023

  4. Traffic Monitoring System, Data for 2018, 2019, 2020, 2021, and 2022 (2023). https://www.road.re.kr/main/main.asp.

  5. Ministry of Land, Infrastructure and Transport, Data for 2018, 2019, 2020, 2021, and 2022. (2023) http://www.molit.go.kr/portal.do.

  6. Ministry of Culture, Sports, and Tourism, Data for 2018, 2019, 2020, 2021, and 2022. (2023) https://stat.mcst.go.kr/portal/main.

  7. X.T. Xi, X.F. Ding, D.P. Fu, L.P. Zhou, K.X. Liu, Chin. Sci. Bull. (2011). https://doi.org/10.1007/s11434-011-4453-8

    Article  Google Scholar 

  8. G.M. Santos, A.I.P. Conf, Proc. (2012). https://doi.org/10.1063/1.3688819

    Article  Google Scholar 

  9. S. Djuricin, X. Xu, D.E. Pataki, J. Geophys. Res. (2012). https://doi.org/10.1029/2011JD017284

    Article  Google Scholar 

  10. J.C. Turnbull, L.G. Domingues, N. Turton, Environ. Sci. Technol. (2022). https://doi.org/10.1021/acs.est.1c07994

    Article  PubMed  PubMed Central  Google Scholar 

  11. C.L. Bennett, R.P. Beukens, M.R. Clover, H.E. Gove, R.B. Liebert, A. Litherland, K.H. Purser, W.E. Sondheim, Science (1977). https://doi.org/10.1126/science.198.4316.508

    Article  PubMed  Google Scholar 

  12. R. Hellborg, G. Skog, Mass Spectrom. Rev. (2008). https://doi.org/10.1002/mas.20172

    Article  PubMed  Google Scholar 

  13. D. Lal, A.J.T. Jull, Radiocarbon (2001). https://doi.org/10.1017/S0033822200041394

    Article  Google Scholar 

  14. W.M.E. Mook, Environmental Isotopes in the hydrological cycle: principles and applications. UNESCO/ IAEA Series. (2001) http://www-naweb.iaea.org/napc/ih/documents/global_cycle/Environmental%

  15. P Povinec, L.L.W, Kwong, J Kaizer, M Molnár, H Nies, L Palcsu, L Papp, M.K. Pham P Jean-Baptiste, J. Environ. Radioact (2017) https://doi.org/10.1016/j.jenvrad.2016.02.027.

  16. H.E. Suess, Radiocarbon concentration in modern wood. Science (1955). https://doi.org/10.1126/science.122.3166.415.b

    Article  PubMed  Google Scholar 

  17. P.P Tans, A.F.M De Jong, W.G Mook, Nature (1979) https://doi.org/10.1038/280826a0.

  18. A. Pazdur, T. Nakamura, S. Pawelczyk, J. Pawlyta, N. Piotrowska, A. Rakowski, B. Sensula, M. Szczepanek, Radiocarbon (2007). https://doi.org/10.1017/S003382220004265X

    Article  Google Scholar 

  19. D. Bozhinova, M. Combe, S.W.L. Palstra, H.A.J. Meijer, M.C. Krol, W. Peters, Glob. Biogeochem. Cycles (2013). https://doi.org/10.1002/gbc.20065

    Article  Google Scholar 

  20. I. Levin, U. Karstens, Tellus (2007). https://doi.org/10.1111/j.1600-0889.2006.00244.x

    Article  Google Scholar 

  21. S.H. Lee, S.H. Park, M.J. Kong, Y.S. Kim, Nucl. Instrum. Methods Phys. Res. B (2020). https://doi.org/10.1016/j.nimb.2019.12.027

    Article  Google Scholar 

  22. S.H. Lee, M.J. Kong, S.G. Lee, S.H. Park, Y.S. Kim, Radiocarbon (2022). https://doi.org/10.1017/RDC.2022.77

    Article  Google Scholar 

  23. Korean Meteorological Association, (2023) http://weather.go.kr.

  24. F. Brock, T. Higham, P. Ditchfield, C.B. Ramsey, Radiocarbon (2010). https://doi.org/10.1017/S0033822200045069

    Article  Google Scholar 

  25. A.T. Aertz-Bijma, J. van der Plicht, H.A.J. Meijer, Radiocarbon 43, 293–298 (2001). https://doi.org/10.1017/S0033822200038133

    Article  Google Scholar 

  26. M. Němec, L. Wacker, H. Gäggeler, Radiocarbon (2010). https://doi.org/10.1017/S0033822200046464

    Article  Google Scholar 

  27. Gyeongsangbuk-Do Culture and Tourism Organization, Data for 2018, 2019, 2020, 2021, and 2022. (2023) https://www.gtc.co.kr/.

  28. Korea Culture and Tourism Institute, Data for 2018, 2019, 2020, 2021, and 2022. (2023) https://know.tour.go.kr/stat/visitStatDis/table.do.

  29. Korea Expressway Corporation, Data for 2018, 2019, 2020, 2021, and 2022. (2023) https://www.ex.co.kr/.

  30. Korea Tourism Organization Datalab, Data for 2018, 2019, 2020, 2021, and 2022. (2023) https://datalab.visitkorea.or.kr/.

  31. G.M. Santos, F.M. Oliveira, J. Park, A.C. Sena, J.B. Chiquetto, K.D. Macario, C.S. Grainger, Assessment of the regional fossil fuel CO2 distribution through Δ14C patterns in ipê leaves: The case of Rio de Janeiro state, Brazil. City Environ.Interact. 1, 100001 (2019). https://doi.org/10.1016/j.cacint.2019.06.001

    Article  Google Scholar 

  32. G.M. Santos, D. Granato-Souza, A.C. Barbosa, R. Oelkers, L. Andreu-Hayles, Quatern. Geochronol. (2020). https://doi.org/10.1016/j.quageo.2020.101079

    Article  Google Scholar 

  33. R. Sharma, R.K. Kunchala, S. Ojha, P. Kumar, S. Gargari, S. Chopra, J. Environ. Sci. (2023). https://doi.org/10.1016/j.jes.2021.11.003

    Article  Google Scholar 

  34. L. Wacker, M. Christl, H.A. Synal, Methods Phys. Res. B (2010). https://doi.org/10.1016/j.nimb.2009.10.078

    Article  Google Scholar 

  35. H. Godwin, Nature (1962). https://doi.org/10.1038/195984a0

    Article  PubMed  Google Scholar 

  36. M. Stuiver, H.A. Polach, Radiocarbon (1977). https://doi.org/10.1017/S0033822200003672

    Article  Google Scholar 

  37. K.E. Stenström, G. Skog, E. Georgiadou, J. Genberg, A. Johansson, A Guide to Radiocarbon Units and Calculations Department of Physics Internal Report 1–17 (Lund University, 2011).

  38. S.E. Trumbore, C.A. Sierra, C.E. Hicks Pries, in Radiocarbon and climate change. ed. by E. Schuur, E. Druffel, S. Trumbore (Springer Cham, Springer International Publishing, 2016), pp.45–82. https://doi.org/10.1007/978-3-319-25643-6_3

    Chapter  Google Scholar 

  39. K. Hippe, N.A. Lifton, Radiocarbon (2014). https://doi.org/10.2458/56.17917

    Article  Google Scholar 

  40. Integrated Carbon Observation SystemData for 2018, 2020, and 2022. (2023) https://www.icos-cp.eu/.

  41. International Foundation HFSJG, Activity Report 2022. Available at : https://www.hfsjg.ch/.

  42. Korea Railroad Corporation, Data for 2018, 2020, and 2022. (2023) https://info.korail.com/info/index.do.

  43. M. Barth, K. Boriboonsomsin, Transp. Res. Rec. (2008). https://doi.org/10.3141/205

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF), of the Ministry of Science and ICT, Korea vide grant no. 2022R1A2C2006213.

Funding

This study was supported by the National Research Foundation of Korea (NRF), Ministry of Science and ICT, Korea (Grant No. 2022R1A2C2006213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Seok Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SW., Park, SH. & Kim, YS. The influence of human activity on regional radiocarbon characteristics using accelerator mass spectrometry during the COVID-19 period. J. Korean Phys. Soc. 84, 439–445 (2024). https://doi.org/10.1007/s40042-024-01027-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-024-01027-5

Keywords