Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Low-cost air quality monitoring system design and comparative analysis with a conventional method

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

This paper deals with the development of a portable electronic device that simultaneously measures toxic gases and suspended particles in real time. It is based on a microcontroller board and low-cost sensors including dust sensor, smoke sensor, liquefied petroleum gas sensor, carbon dioxide (CO2) sensor, carbon monoxide (CO) sensor, temperature, and humidity sensors. The proposed electronic device presents several advantages, namely low energy consumption, low-cost equipment, easily deployable in the field, real-time, and large number measurements of parameters (in situ). It can also send automatically alert information and transmit emergency calls to the supervisor if the concentration of measured pollutant (particulate matter PM2.5) is beyond the threshold WHO limit of 25 µg/m3. The proposed electronic device can also be used as an outdoor or indoor air quality monitoring system. Compared to WHO limits, all the values of the parameters measured are generally acceptable, except CO value which slightly exceeds the average threshold value allowed in workplaces. A comparative analysis of particulate matter concentrations obtained from the proposed prototype and a conventional method based on the GENT Stacked Filter Unit Sampler (reference method) is carried out by placing both devices on the same fixed sampling site and collecting data at the same time over a period of two months. A statistical analysis based on linear regression highlighted a good agreement between these two methods with R2 = 0.8897. Furthermore, a reliability coefficient of 1.008 ± 0.01 confirms the effectiveness of the proposed device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Find the latest articles, discoveries, and news in related topics.

References

  1. Zhang, Q., Wan, Z., Hemmings, B., Abbasov, F.: Reducing black carbon emissions from arctic shipping: solutions and policy implications. J. Cleaner Prod. 241, 118261 (2019). https://doi.org/10.1016/j.jclepro.2019.118261

  2. Ruprecht, A.A., De Marco, C., Saffari, A., Pozzi, P., Mazza, R., Veronese, C., Angellotti, G., Munarini, E., Ogliari, A.C., Westerdahl, D., Hasheminassab, S., Shafer, M.M., Schauer, J.J., Repace, J., Sioutas, C., Boffi, R.: Environmental pollution and emission factors of electronic cigarettes, heat-not-burn tobacco products, and conventional cigarettes. Aerosol Sci. Technol. 51, 674–684 (2017). https://doi.org/10.1080/02786826.2017.1300231

    Article  Google Scholar 

  3. ChooChuay, C., Pongpiachan, S., Tipmanee, D., Suttinun, O., Deelaman, W., Wang, Q., Xing, L., Li, G., Han, Y., Palakun, J., Cao, J.: Impacts of PM.25 sources on variations in particulate chemical compounds in ambient air of Bangkok, Thailand. Atmos. Pollut. Res. 11, 1657–1667 (2020). https://doi.org/10.1016/j.apr.2020.06.030

    Article  Google Scholar 

  4. Han, Y.M., Cao, J.J., Chow, J.C., Watson, J.G., An, Z.S., Liu, S.X.: Elemental carbon in urban soils and road dusts in Xi’an, China and its implication for air pollution. Atmos. Environ. 43, 2464–2470 (2009). https://doi.org/10.1016/j.atmosenv.2009.01.040

    Article  Google Scholar 

  5. Duché, S., Madelin, M.: Les capteurs low cost de pollution : Un Nouvel Eldorado Pour L ’ Évaluation De L ’ Exposition Individuelle Aux Particules ? In: XXVIIIe Colloque de l’Association Internationale de Climatologie, pp. 140–145 (2015)

  6. Soldatova, L.N., Rocca-Serra, P., Dumontier, M., Shah, N.H.: Selected papers from the 16th annual bio-ontologies special interest group meeting. J. Biomed. Semantics. (2014). https://doi.org/10.1186/2041-1480-5-S1-I1

    Article  Google Scholar 

  7. Wamsler, C., Brink, E.: Interfacing citizens’ and institutions’ practice and responsibilities for climate change adaptation. Urban Clim. 7, 64–91 (2014). https://doi.org/10.1016/j.uclim.2013.10.009

    Article  Google Scholar 

  8. Saini, J., Dutta, M., Marques, G.: A comprehensive review on indoor air quality monitoring systems for enhanced public health. https://sustainenvironres.biomedcentral.com/articles/https://doi.org/10.1186/s42834-020-0047-y (2020)

  9. Rachovski, T.M., Ivanov, I.M., Hadzhikolev, E.N., Hadzhikoleva, S.I.: Air pollution monitoring system. Int. J. Innov. Technol. Explor. Eng. 8, 2275–2279 (2019). https://doi.org/10.35940/ijitee.K2067.0981119

    Article  Google Scholar 

  10. WHO/Europe|Publications-Health effects of black carbon. https://www.euro.who.int/en/publications/abstracts/health-effects-of-black-carbon-2012(2012)

  11. Johnson, K.K.: Evaluating air pollutant exposure and the impacts of indoor air filtration using low-cost monitors. Doctoral dissertation, Duke University (2020)

  12. Kaur, N., Mahajan, R., Bagai, D., Student, P.G.: Air quality monitoring system based on arduino microcontroller. Int. J. Innov. Res. Sci. Eng. Technol 5, 9635–9646 (2016). https://doi.org/10.15680/IJIRSET.2015.0506018

    Article  Google Scholar 

  13. Purwanto, P., Suryono, S., Sunarno, S.: Design of air quality monitoring system based on web using wireless sensor network. In: Journal of Physics: Conference Series, p. 012043. Institute of Physics Publishing (2019)

  14. Jo, J., Jo, B., Kim, J., Kim, S., Han, W.: Development of an IoT-based indoor air quality monitoring platform. J. Sens. (2020). https://doi.org/10.1155/2020/8749764

    Article  Google Scholar 

  15. Srinivas, C.: Toxic gas detection and monitoring. Int. J. Civ. Eng. Technol. 8, 614–622 (2017)

    Google Scholar 

  16. Naren, V., Prabhu, R.A., Ganesh, C.S.S.: Intelligent gas leakage detection system with IoT using ESP 8266 module. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. (2018). https://doi.org/10.15662/IJAREEIE.2018.0712003

    Article  Google Scholar 

  17. Ravishankar A.P.R.: Embedded system based sensor failiure detection and industrial environment controll over wireless network. In: Innovative Research Publications (2014)

  18. Olstrup, H., Johansson, C., Forsberg, B.: The use of carbonaceous particle exposure metrics in health impact calculations. Int. J. Environ. Res. Public Health 13, 249 (2016). https://doi.org/10.3390/ijerph13030249

    Article  Google Scholar 

  19. Hopke, P.K., Xie, Y., Raunemaa, T., Biegalski, S., Landsberger, S., Maenhaut, W., Artaxo, P., Cohen, D.: Characterization of the gent stacked filter unit pm10 sampler. Aerosol Sci. Technol. 27, 726–735 (1997). https://doi.org/10.1080/02786829708965507

    Article  Google Scholar 

  20. Castanho, A.D.A., Martins, J.V., Hobbs, P.V., Artaxo, P., Remer, L., Yamasoe, M., Colarco, P.R.: Chemical characterization of aerosols on the East Coast of the United States using aircraft and ground-based stations during the CLAMS experiment. J. Atmos. Sci. 62, 934–946 (2005). https://doi.org/10.1175/JAS3388.1

    Article  Google Scholar 

  21. Nducol, N., Siaka, Y.F.T., Yakum-Ntaw, S.Y., Manga, J.D., Vardamides, J.C.: Preliminary study of black carbon content in airborne particulate matters from an open site in the city of Yaoundé, Cameroon. Environ. Monit. Assess. (2021). https://doi.org/10.1007/s10661-021-08924-3

    Article  Google Scholar 

  22. Philippe Menini, P., Ph Benech, R.: Habilitation À Diriger Des Recherches Du Capteur de Gaz à Oxydes Métalliques vers les Nez Electroniques sans Fil. Université Paul Sabatier - Toulouse III (2011)

  23. Hansen, A.D.A., Novakov, T.: Real-time measurement of aerosol black carbon during the carbonaceous species methods comparison study. Aerosol Sci. Technol. 12, 22–194 (1990). https://doi.org/10.1080/02786829008959339

    Article  Google Scholar 

  24. Maenhaut, W., Francois, F., Cafmeyer, J.: The “Gent” stacked filter unit (SFU) sampler for the collection of atmospheric aerosols in two size fractions: Description and instructions for installation and use. No. NAHRES-19 (1994)

  25. Marques, G., Saini, J., Dutta, M., Singh, P.K., Hong, W.C.: Indoor air quality monitoring systems for enhanced living environments: a review toward sustainable smart cities. Sustain (2020). https://doi.org/10.3390/SU12104024

    Article  Google Scholar 

  26. Carpenter, D., Poitrast, B.: Recommended carbon dioxide and relative humidity levels for maintaining acceptable indoor air quality. Air Force Occup. Environ. Heal. Lab Brooks Afb Tx. (1990)

  27. Canu, M., Galvis, B., Morales, R., Ramírez, O., Madelin, M.: Understanding the Shinyei PPD24NS low-cost dust sensor. In: 2018 IEEE International Conference on Environmental Engineering EE 2018-Proceedings (pp. 1–10) (2018). https://doi.org/10.1109/EE1.2018.8385268

  28. Karagulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., Redon, N., Crunaire, S., Borowiak, A.: Review of the performance of low-cost sensors for air quality monitoring. Atmosphere (Basel) 10, 506 (2019). https://doi.org/10.3390/atmos10090506

    Article  Google Scholar 

  29. Dias, M., Bernardo, H., Ramos, J., Egido, M.: Indoor environment and energy efficiency in school buildings—part 1: Indoor air quality. In: Proceedings of the 2011 3rd International Youth Conference Energy IYCE 2011, pp. 1–7 (2011)

  30. Budde, M., Zhang, L., Beigl, M.: Distributed, low-cost particulate matter sensing: scenarios, challenges, approaches. ProScience 1, 230–236 (2014). https://doi.org/10.14644/dust.2014.038

    Article  Google Scholar 

  31. Bloemen, H.T., Van der Meulen, A., Mooibroek, D., Cassee, F.R.: Monitoring black smoke? Its value for monitoring the impact of abatement measures. RIVM Letter Report 863001004 (2008)

  32. Campagna, D., Lefranc, A., Nunes-Odasso, C., Ferry, R.: Évaluation des risques de la pollution urbaine sur la santé en Île-de-France (erpurs): liens avec la mortalité 1987–1998. VertigO (2003). https://doi.org/10.4000/vertigo.4637

    Article  Google Scholar 

  33. Idrees, Z., Zou, Z., Zheng, L.: Edge computing based IoT architecture for low cost air pollution monitoring systems: a comprehensive system analysis. Des. Consider. Dev. Sens. 18, 3021 (2018). https://doi.org/10.3390/s18093021

    Article  Google Scholar 

  34. Kuula, J., Mäkelä, T., Aurela, M., Teinilä, K., Varjonen, S., González, Ó., Timonen, H.: Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors. Atmos. Meas. Tech. 13, 2413–2423 (2020). https://doi.org/10.5194/amt-13-2413-2020

    Article  Google Scholar 

  35. Wang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J., Biswas, P.: Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement. Aerosol Sci. Technol. 49, 1063–1077 (2015). https://doi.org/10.1080/02786826.2015.1100710

    Article  Google Scholar 

  36. Alam, M., Adnan Khan, S., Khairulalam, M., Syed, A., Rajkumar, R., Bin Azam, T.: Industrial level analysis of air quality and sound limits monitoring in Bangladesh using real time control system. In: Vibroengineering Procedia. pp. 81–86. JVE International (2017)

  37. WHO: Mise à jour mondiale 2005 (2005)

  38. Chaudhry, V.: Arduair: air quality monitoring. Int. J. Environ. Eng. Manag. 4, 639–646 (2013)

    Google Scholar 

Download references

Acknowledgements

This research work was supported by the International Atomic Energy Agency (IAEA) as part of the Coordinated Research Project CRP J02014, by the Cameroonian Ministry of Scientific Research and Innovation through the Public Investment Budget (BIP) 2020, and by APSA: Association for the Scientific Promotion of Africa (French law 1901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saïdou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, M.T., Michaux, K.N., Bertrand, B. et al. Low-cost air quality monitoring system design and comparative analysis with a conventional method. Int J Energy Environ Eng 12, 873–884 (2021). https://doi.org/10.1007/s40095-021-00415-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-021-00415-y

Keywords