Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Interaktion von körperlichen Veränderungen und psychischen Störungen bei COVID-19. Ein Scoping Review

Interaction of somatic findings and psychiatric symptoms in COVID-19. A scoping review

  • review
  • Published:
neuropsychiatrie Aims and scope Submit manuscript

Zusammenfassung

Eine Infektion mit SARS-CoV‑2 kann zu einer Beteiligung des Nervensystems mit neurologischer oder psychiatrischer Symptomatik führen. Entzündungsvorgängen scheint dabei eine wesentlich größere Bedeutung zuzukommen als dem Virus selbst. Der Beitrag versucht aus der vorliegenden Literatur biologische Veränderungen im Kontext einer SARS-CoV‑2 Infektion zu identifizieren, die mit psychiatrischen Symptomen einhergehen können und beschäftigt sich schwerpunktmäßig mit Delir, kognitiven Störungen, Depression, Angst, postraumatischer Belastungsstörung und Psychosen. Neuroinflammation mit Schädigung der kapillaren Endothelzellen des Gehirns und Aktivierung von Mikroglia und Astrozyten und damit Freisetzung von Zytokinen spielen dabei in allen Bereichen eine zentrale Rolle und können zu Schädigungen der grauen und der weißen Substanz und zu Störungen des Hirnmetabolismus und der Konnektivität führen. Derartige neuroimmunologische Vorgänge sind als biologisches Korrelat bei vielen psychischen Erkrankungen, wie affektiven Störungen, Psychosen und dementiellen Erkrankungen, beschrieben. Die Aktivierung der Gliazellen kann lange über die auslösende Noxe hinaus andauern und damit auch zu Spätfolgen der Infektion beitragen.

Summary

An infection with SARS-CoV‑2 can affect the central nervous system, leading to neurological as well as psychiatric symptoms. In this respect, mechanisms of inflammation seem to be of much greater importance than the virus itself. This paper deals with the possible contributions of organic changes to psychiatric symptomatology and deals especially with delirium, cognitive symptoms, depression, anxiety, posttraumatic stress disorder and psychosis. Processes of neuroinflammation with infection of capillary endothelial cells and activation of microglia and astrocytes releasing high amounts of cytokines seem to be of key importance in all kinds of disturbances. They can lead to damage in grey and white matter, impairment of cerebral metabolism and loss of connectivity. Such neuroimmunological processes have been described as a organic basis for many psychiatric disorders, as affective disorders, psychoses and dementia. As the activation of the glia cells can persist for a long time after the offending agent has been cleared, this can contribute to long term sequalae of the infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with Coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683–90. https://doi.org/10.1001/jamaneurol.2020.1127.

    Article  PubMed  Google Scholar 

  2. Raony Í, de Figueiredo CS, Pandolfo P, Giestal-de-Araujo E, Oliveira-Silva Bomfim P, Savino W. Psycho-neuroendocrine-immune interactions in COVID-19: potential impacts on mental health. Front Immunol. 2020;11:1170. https://doi.org/10.3389/fimmu.2020.01170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sommer IE, Bakker PR. What can psychiatrists learn from SARS and MERS outbreaks? Lancet Psychiatry. 2020;7(7):565–6. https://doi.org/10.1016/s2215-0366(20)30219-4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rogers JP, Chesney E, Oliver D, Pollak TA, McGuire P, Fusar-Poli P, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020;7(7):611–27. https://doi.org/10.1016/s2215-0366(20)30203-0.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Favas TT, Dev P, Chaurasia RN, Chakravarty K, Mishra R, Joshi D, et al. Neurological manifestations of COVID-19: a systematic review and meta-analysis of proportions. Neurol Sci. 2020;41(12):3437–70. https://doi.org/10.1007/s10072-020-04801-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frontera JA, Sabadia S, Lalchan R, Fang T, Flusty B, Millar-Vernetti P, et al. A prospective study of neurologic disorders in hospitalized patients with COVID-19 in New York city. Neurology. 2021;96(4):e575–e86. https://doi.org/10.1212/wnl.0000000000010979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Javed A. Neurological associations of SARS-coV‑2 infection: a systematic review. CNS Neurol Disord Drug Targets. 2022;21(3):246–58. https://doi.org/10.2174/1871527320666210216121211.

    Article  CAS  PubMed  Google Scholar 

  8. Chen X, Laurent S, Onur OA, Kleineberg NN, Fink GR, Schweitzer F, et al. A systematic review of neurological symptoms and complications of COVID-19. J Neurol. 2021;268(2):392–402. https://doi.org/10.1007/s00415-020-10067-3.

    Article  CAS  PubMed  Google Scholar 

  9. Misra S, Kolappa K, Prasad M, Radhakrishnan D, Thakur KT, Solomon T, et al. Frequency of neurologic manifestations in COVID-19: a systematic review and meta-analysis. Neurology. 2021;97(23):e2269–e81. https://doi.org/10.1212/wnl.0000000000012930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rittmannsberger H, Barth M, Malik P, Yazdi K. Neuropsychiatric aspects of COVID-19—A narrative overview. Fortschr Neurol Psychiatr. 2022;90(3):108–20. https://doi.org/10.1055/a-1523-3850.

    Article  PubMed  Google Scholar 

  11. Rabady S, Altenberger J, Brose M, Denk-Linnert DM, Fertl E, Götzinger F, et al. Guideline S1: long COVID: diagnostics and treatment strategies. Wien Klin Wochenschr. 2021;133(Suppl 7):237–78. https://doi.org/10.1007/s00508-021-01974-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–15. https://doi.org/10.1038/s41591-021-01283-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ettman CK, Cohen GH, Abdalla SM, Sampson L, Trinquart L, Castrucci BC, et al. Persistent depressive symptoms during COVID-19: a national, population-representative, longitudinal study of U.S. adults. Lancet Reg Health Am. 2022;5:100091. https://doi.org/10.1016/j.lana.2021.100091.

    Article  PubMed  Google Scholar 

  14. Benfante A, Tesio V, Di Tella M, Romeo A, Castelli L. From the first to the second wave of COVID-19: anxiety, de-pressive, and post-traumatic stress symptoms in the Italian population. Int J Environ Res Public Health. 2022; https://doi.org/10.3390/ijerph19031239. 19(3).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Robinson E, Sutin AR, Daly M, Jones A. A systematic review and meta-analysis of longitudinal cohort studies comparing mental health before versus during the COVID-19 pandemic in. J Affect Disord. 2020;2022(296):567–76. https://doi.org/10.1016/j.jad.2021.09.098.

    Article  CAS  Google Scholar 

  16. Rittmannsberger H, Barth M, Malik P, Malsiner-Walli G, Yazdi K. First episode psychotic disorders in the wake of the COVID-19 pandemic. A descriptive review of casereports. Acta Neuropsychiatr. 2022; https://doi.org/10.1017/neu.2022.11. 1–47.

    Article  PubMed  Google Scholar 

  17. Kumar M, Thakur AK. Neurological manifestations and comorbidity associated with COVID-19: an overview. Neurol Sci. 2020;41(12):3409–18. https://doi.org/10.1007/s10072-020-04823-6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Roy D, Ghosh R, Dubey S, Dubey MJ, Benito-León J, Kanti Ray B. Neurological and neuropsychiatric impacts of COVID-19 pandemic. Can J Neurol Sci. 2020; https://doi.org/10.1017/cjn.2020.173. 1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Steardo L Jr., Steardo L, Verkhratsky A. Psychiatric face of COVID-19. Transl Psychiatry. 2020;10(1):261. https://doi.org/10.1038/s41398-020-00949-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Sousa Moreira JL, Barbosa SMB, Vieira JG, Chaves NCB, Felix EBG, Feitosa PWG, et al. The psychiatric and neuropsychiatric repercussions associated with severe infections of COVID-19 and other coronaviruses. Prog Neuropsychopharmacol Biol Psychiatry. 2021; https://doi.org/10.1016/j.pnpbp.2020.110159. 106.

    Article  PubMed  Google Scholar 

  21. Ritchie K, Chan D. The emergence of cognitive COVID. World Psychiatry. 2021;20(1):52–3.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B, et al. Non-neuronal expression of SARS-CoV‑2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020; https://doi.org/10.1126/sciadv.abc5801. 6(31).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bulfamante G, Chiumello D, Canevini MP, Priori A, Mazzanti M, Centanni S, et al. First ultrastructural autoptic findings of SARS-Cov‑2 in olfactory pathways and brainstem. Minerva Anestesiol. 2020;86(6):678–9. https://doi.org/10.23736/s0375-9393.20.14772-2.

    Article  PubMed  Google Scholar 

  24. Najt P, Richards HL, Fortune DG. Brain imaging in patients with COVID-19: a systematic review. Brain Behav Immun Health. 2021;16:100290. https://doi.org/10.1016/j.bbih.2021.100290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Douaud G, Lee S, Alfaro-Almagro F, Arthofer C, Wang C, McCarthy P, et al. SARS-CoV‑2 is associated with changes in brain structure in UK biobank. Nature. 2022; https://doi.org/10.1038/s41586-022-04569-5.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, et al. Neuropilin‑1 facilitates SARS-CoV‑2 cell entry and infectivity. Science. 2020;370(6518):856–60. https://doi.org/10.1126/science.abd2985.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  27. Gadanec LK, McSweeney KR, Qaradakhi T, Ali B, Zulli A, Apostolopoulos V. Can SARS-coV‑2 virus use multiple receptors to enter host cells? Int J Mol Sci. 2021; https://doi.org/10.3390/ijms22030992. 22(3).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Maiese A, Manetti AC, Bosetti C, Del Duca F, La Russa R, Frati P, et al. SARS-coV‑2 and the brain: a review of the current knowledge on neuropathology in COVID-19. Brain Pathol. 2021; https://doi.org/10.1111/bpa.13013. e13013.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Davies J, Randeva HS, Chatha K, Hall M, Spandidos DA, Karteris E, et al. Neuropilin‑1 as a new potential SARS-coV‑2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Mol Med Rep. 2020;22(5):4221–6. https://doi.org/10.3892/mmr.2020.11510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bodnar B, Patel K, Ho W, Luo JJ, Hu W. Cellular mechanisms underlying neurological/neuropsychiatric manifestations of COVID-19. J Med Virol. 2020; https://doi.org/10.1002/jmv.26720.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Orsini A, Corsi M, Santangelo A, Riva A, Peroni D, Foiadelli T, et al. Challenges and management of neurological and psychiatric manifestations in SARS-coV‑2 (COVID-19) patients. Neurol Sci. 2020;41(9):2353–66. https://doi.org/10.1007/s10072-020-04544-w.

    Article  PubMed  PubMed Central  Google Scholar 

  32. de Erausquin GA, Snyder H, Carrillo M, Hosseini AA, Brugha TS, Seshadri S. The chronic neuropsychiatric sequelae of COVID-19: the need for a prospective study of viral impact on brain functioning. Alzheimers Dement. 2021; https://doi.org/10.1002/alz.12255.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Travi G, Rossotti R, Merli M, D’Amico F, Chiappetta S, Giussani G, et al. Neurological manifestations in patients hospitalized with COVID-19: a retrospective analysis from a large cohort in northern Italy. Eur J Neurosci. 2021;53(8):2912–22. https://doi.org/10.1111/ejn.15159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jonigk D, Märkl B, Helms J. COVID-19: what the clinician should know about post-mortem findings. Intensive Care Med. 2021;47(1):86–9. https://doi.org/10.1007/s00134-020-06302-0.

    Article  CAS  PubMed  Google Scholar 

  35. Gonçalves de Andrade E, Šimončičová E, Carrier M, Vecchiarelli HA, Robert M, Tremblay M. Microglia fighting for neurological and mental health: on the central nervous system frontline of COVID-19 pandemic. Front Cell Neurosci. 2021;15:647378. https://doi.org/10.3389/fncel.2021.647378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schweitzer F, Goereci Y, Franke C, Silling S, Bösl F, Maier F, et al. Cerebrospinal fluid analysis post-COVID-19 is not suggestive of persistent central nervous system infection. Ann Neurol. 2022;91(1):150–7. https://doi.org/10.1002/ana.26262.

    Article  CAS  PubMed  Google Scholar 

  37. Fotuhi M, Mian A, Meysami S, Raji CA. Neurobiology of COVID-19. J Alzheimers Dis. 2020;76(1):3–19. https://doi.org/10.3233/jad-200581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Espíndola OM, Siqueira M, Soares CN, Lima M, Leite A, Araujo AQC, et al. Patients with COVID-19 and neurological manifestations show undetectable SARS-CoV‑2 RNA levels in the cerebrospinal fluid. Int J Infect Dis. 2020;96:567–9. https://doi.org/10.1016/j.ijid.2020.05.123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cosentino G, Todisco M, Hota N, Della Porta G, Morbini P, Tassorelli C, et al. Neuropathological findings from COVID-19 patients with neurological symptoms argue against a direct brain invasion of SARS-coV-2: a critical systematic review. Eur J Neurol. 2021;28(11):3856–65. https://doi.org/10.1111/ene.15045.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19(11):919–29. https://doi.org/10.1016/s1474-4422(20)30308-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martin M, Paes VR, Cardoso EF, Neto C, Kanamura CT, Leite CDC, et al. Postmortem brain 7T MRI with minimally invasive pathological correlation in deceased COVID-19 subjects. Insights Imaging. 2022;13(1):7. https://doi.org/10.1186/s13244-021-01144-w.

    Article  PubMed  PubMed Central  Google Scholar 

  42. McQuaid C, Brady M, Deane R. SARS-CoV-2: is there neuroinvasion? Fluids Barriers CNS. 2021;18(1):32. https://doi.org/10.1186/s12987-021-00267-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Solomon T. Neurological infection with SARS-coV-2—the story so far. Nat Rev Neurol. 2021;17(2):65–6. https://doi.org/10.1038/s41582-020-00453-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Doyle MF. Central nervous system outcomes of COVID-19. Transl Res. 2021; https://doi.org/10.1016/j.trsl.2021.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lewis A, Frontera J, Placantonakis DG, Lighter J, Galetta S, Balcer L, et al. Cerebrospinal fluid in COVID-19: a systematic review of the literature. J Neurol Sci. 2021;421:117316. https://doi.org/10.1016/j.jns.2021.117316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016;13(1):3–10. https://doi.org/10.1038/cmi.2015.74.

    Article  CAS  PubMed  Google Scholar 

  47. Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull. 2014;140(3):774–815. https://doi.org/10.1037/a0035302.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mingoti MED, Bertollo AG, Simões JLB, Francisco GR, Bagatini MD, Ignácio ZM. COVID-19, oxidative stress, and neuroinflammation in the depression route. J Mol Neurosci. 2022; https://doi.org/10.1007/s12031-022-02004-y.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Barnes J, Mondelli V, Pariante CM. Genetic contributions of inflammation to depression. Neuropsychopharmacology. 2017;42(1):81–98. https://doi.org/10.1038/npp.2016.169.

    Article  CAS  PubMed  Google Scholar 

  50. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, et al. Profiling serum cytokines in COVID-19 patients reveals IL‑6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123–30. https://doi.org/10.1080/22221751.2020.1770129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Melo AKG, Milby KM, Caparroz A, Pinto A, Santos RRP, Rocha AP, et al. Biomarkers of cytokine storm as red flags for severe and fatal COVID-19 cases: a living systematic review and meta-analysis. PLoS ONE. 2021;16(6):e253894. https://doi.org/10.1371/journal.pone.0253894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tang Y, Sun J, Pan H, Yao F, Yuan Y, Zeng M, et al. Aberrant cytokine expression in COVID-19 patients: associations between cytokines and disease severity. Cytokine. 2021;143:155523. https://doi.org/10.1016/j.cyto.2021.155523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zeng HL, Lu QB, Yang Q, Wang X, Yue DY, Zhang LK, et al. Longitudinal profile of laboratory parameters and their application in the prediction for fatal outcome among patients infected with SARS-coV-2: a retrospective cohort study. Clin Infect Dis. 2021;72(4):626–33. https://doi.org/10.1093/cid/ciaa574.

    Article  CAS  PubMed  Google Scholar 

  54. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56. https://doi.org/10.1038/nrn2297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tremblay ME, Madore C, Bordeleau M, Tian L, Verkhratsky A. Neuropathobiology of COVID-19: the role for glia. Front Cell Neurosci. 2020;14:592214. https://doi.org/10.3389/fncel.2020.592214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xanthos DN, Sandkühler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci. 2014;15(1):43–53. https://doi.org/10.1038/nrn3617.

    Article  CAS  PubMed  Google Scholar 

  57. Blaylock RL. Immunology primer for neurosurgeons and neurologists part 2: Innate brain immunity. Surg Neurol Int. 2013;4:118. https://doi.org/10.4103/2152-7806.118349.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tay TL, Béchade C, D’Andrea I, St-Pierre M‑K, Henry MS, Roumier A, et al. Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan. Front Mol Neurosci. 2018;10:421. https://doi.org/10.3389/fnmol.2017.00421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Domingues R, Lippi A, Setz C, Outeiro TF, Krisko A. SARS-CoV‑2, immunosenescence and inflammaging: partners in the COVID-19 crime. Aging (Albany NY). 2020;12(18):18778–89. https://doi.org/10.18632/aging.103989.

    Article  CAS  PubMed  Google Scholar 

  60. Asslih S, Damri O, Agam G. Neuroinflammation as a common denominator of complex diseases (cancer, diabetes type 2, and neuropsychiatric disorders). Int J Mol Sci. 2021; https://doi.org/10.3390/ijms22116138. 22(11).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation. 2021;18(1):258. https://doi.org/10.1186/s12974-021-02309-6.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Leonard BE. Inflammation and depression: a causal or coincidental link to the pathophysiology? Acta Neuropsychiatr. 2018;30(1):1–16. https://doi.org/10.1017/neu.2016.69.

    Article  PubMed  Google Scholar 

  63. Andrews MG, Mukhtar T, Eze UC, Simoneau CR, Perez Y, Mostajo-Radji MA, et al. Tropism of SARS-coV‑2 for developing human cortical astrocytes. bioRxiv. 2021; https://doi.org/10.1101/2021.01.17.427024.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Besedovsky HO, del Rey A. Central and peripheral cytokines mediate immune-brain connectivity. Neurochem Res. 2011;36(1):1–6. https://doi.org/10.1007/s11064-010-0252-x.

    Article  CAS  PubMed  Google Scholar 

  65. Perlmutter A. Immunological interfaces: the COVID-19 pandemic and depression. Front Neurol. 2021;12:657004. https://doi.org/10.3389/fneur.2021.657004.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mohammadi S, Moosaie F, Aarabi MH. Understanding the immunologic characteristics of neurologic manifestations of SARS-coV‑2 and potential immunological mechanisms. Mol Neurobiol. 2020;57(12):5263–75. https://doi.org/10.1007/s12035-020-02094-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tavčar P, Potokar M, Kolenc M, Korva M, Avšič-Županc T, Zorec R, et al. Neurotropic viruses, astrocytes, and COVID-19. Front Cell Neurosci. 2021;15:662578. https://doi.org/10.3389/fncel.2021.662578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sriwastava S, Tandon M, Podury S, Prasad A, Wen S, Guthrie G, et al. COVID-19 and neuroinflammation: a literature review of relevant neuroimaging and CSF markers in central nervous system inflammatory disorders from SARS-COV2. J Neurol. 2021;268(12):4448–78. https://doi.org/10.1007/s00415-021-10611-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tremblay ME, Madore C, Tian L, Verkhratsky A. Editorial: role of neuroinflammation in the neuropsychiatric and neurological aspects of COVID-19. Front Cell Neurosci. 2022;16:840121. https://doi.org/10.3389/fncel.2022.840121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV‑2 infection. Eur J Intern Med. 2020;76:14–20. https://doi.org/10.1016/j.ejim.2020.04.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. Embo Mol Med. 2010;2(7):247–57. https://doi.org/10.1002/emmm.201000080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zakrocka I, Targowska-Duda KM, Wnorowski A, Kocki T, Jóźwiak K, Turski WA. Angiotensin II type 1 receptor blockers inhibit KAT II activity in the brain-its possible clinical applications. Neurotox Res. 2017;32(4):639–48. https://doi.org/10.1007/s12640-017-9781-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sfera A, Osorio C, Jafri N, Diaz EL, Campo Maldonado JE. Intoxication with endogenous angiotensin II: a COVID-19 hypothesis. Front Immunol. 2020;11:1472. https://doi.org/10.3389/fimmu.2020.01472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bouças AP, Rheinheimer J, Lagopoulos J. Why severe COVID-19 patients are at greater risk of developing depression: a molecular perspective. Neuroscientist. 2022;28(1):11–9. https://doi.org/10.1177/1073858420967892.

    Article  CAS  PubMed  Google Scholar 

  75. Lyra e Silva NM, Barros-Aragão FGQ, De Felice FG, Ferreira ST. Inflammation at the crossroads of COVID-19, cognitive deficits and depression. Neuropharmacology. 2022;209:109023. https://doi.org/10.1016/j.neuropharm.2022.109023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pyne JD, Brickman AM. The impact of the COVID-19 pandemic on dementia risk: potential pathways to cognitive decline. Neurodegener Dis. 2021;21(1–2):1–23. https://doi.org/10.1159/000518581.

    Article  CAS  PubMed  Google Scholar 

  77. Theoharides TC. Could SARS-coV‑2 spike protein be responsible for long-COVID syndrome? Mol Neurobiol. 2022;59(3):1850–61. https://doi.org/10.1007/s12035-021-02696-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kreye J, Reincke SM, Prüss H. Do cross-reactive antibodies cause neuropathology in COVID-19? Nat Rev Immunol. 2020;20(11):645–6. https://doi.org/10.1038/s41577-020-00458-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yapici-Eser H, Koroglu YE, Oztop-Cakmak O, Keskin O, Gursoy A, Gursoy-Ozdemir Y. Neuropsychiatric symptoms of COVID-19 explained by SARS-coV‑2 proteins’ mimicry of human protein interactions. Front Hum Neurosci. 2021;15:656313. https://doi.org/10.3389/fnhum.2021.656313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Butler M, Cross B, Hafeez D, Lim MF, Morrin H, Rengasamy ER, et al. Emerging knowledge of the neurobiology of COVID-19. Psychiatr Clin North Am. 2022;45(1):29–43. https://doi.org/10.1016/j.psc.2021.11.001.

    Article  PubMed  Google Scholar 

  81. Shao SC, Lai CC, Chen YH, Chen YC, Hung MJ, Liao SC. Prevalence, incidence and mortality of delirium in patients with COVID-19: a systematic review and meta-analysis. Age Ageing. 2021;50(5):1445–53. https://doi.org/10.1093/ageing/afab103.

    Article  PubMed  Google Scholar 

  82. Ragheb J, McKinney A, Zierau M, Brooks J, Hill-Caruthers M, Iskander M, et al. Delirium and neuropsychological outcomes in critically Ill patients with COVID-19: a cohort study. BMJ Open. 2021;11(9):e50045. https://doi.org/10.1136/bmjopen-2021-050045.

    Article  PubMed  Google Scholar 

  83. Hawkins M, Sockalingam S, Bonato S, Rajaratnam T, Ravindran M, Gosse P, et al. A rapid review of the pathoetiology, presentation, and management of delirium in adults with COVID-19. J Psychosom Res. 2021;141:110350. https://doi.org/10.1016/j.jpsychores.2020.110350.

    Article  PubMed  Google Scholar 

  84. Pun BT, Badenes R, Heras La Calle G, Orun OM, Chen W, Raman R, et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. Lancet Respir Med. 2021;9(3):239–50. https://doi.org/10.1016/s2213-2600(20)30552-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hariyanto TI, Putri C, Hananto JE, Arisa J, Fransisca VSR, Kurniawan A. Delirium is a good predictor for poor outcomes from coronavirus disease 2019 (COVID-19) pneumonia: a systematic review, meta-analysis, and meta-regression. J Psychiatr Res. 2021;142:361–8. https://doi.org/10.1016/j.jpsychires.2021.08.031.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pranata R, Huang I, Lim MA, Yonas E, Vania R, Kuswardhani RAT. Delirium and mortality in Coronavirus disease 2019 (COVID-19)—a systematic review and meta-analysis. Arch Gerontol Geriatr. 2021;95:104388. https://doi.org/10.1016/j.archger.2021.104388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stracciari A, Bottini G, Guarino M, Magni E, Pantoni L. Cognitive and behavioral manifestations in SARS-coV‑2 infection: not specific or distinctive features? Neurol Sci. 2021;42(6):2273–81. https://doi.org/10.1007/s10072-021-05231-0.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Udzik J, Jakubowski P, Niekrasz M, Barczyszyn A, Parczewski M. COVID-19-associated encephalopathy-case series and clinical considerations. J Clin Med. 2022; https://doi.org/10.3390/jcm11040981.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Uginet M, Breville G, Assal F, Lövblad KO, Vargas MI, Pugin J, et al. COVID-19 encephalopathy: clinical and neurobiological features. J Med Virol. 2021;93(7):4374–81. https://doi.org/10.1002/jmv.26973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kotfis K, Williams Roberson S, Wilson J, Pun B, Ely EW, Jeżowska I, et al. COVID-19: what do we need to know about ICU delirium during the SARS-coV‑2 pandemic? Anaesthesiol Intensive Ther. 2020;52(2):132–8. https://doi.org/10.5114/ait.2020.95164.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Manca R, De Marco M, Venneri A. The impact of COVID-19 infection and enforced prolonged social isolation on neuropsychiatric symptoms in older adults with and without dementia: a review. Front Psychiatry. 2020;11:585540. https://doi.org/10.3389/fpsyt.2020.585540.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Alkeridy WA, Almaghlouth I, Alrashed R, Alayed K, Binkhamis K, Alsharidi A et al. A Unique Presentation of Delirium in a Patient with Otherwise Asymptomatic COVID-19. Journal of the American Geriatrics Society. 2020;68(7):1382–4. https://doi.org/10.1111/jgs.16536.

  93. Beach SR, Praschan NC, Hogan C, Dotson S, Merideth F, Kontos N, et al. Delirium in COVID-19: a case series and exploration of potential mechanisms for central nervous system involvement. Gen Hosp Psychiatry. 2020;65:47–53. https://doi.org/10.1016/j.genhosppsych.2020.05.008.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Butt I, Sawlani V, Geberhiwot T. Prolonged confusional state as first manifestation of COVID-19. Ann Clin Transl Neurol. 2020;7(8):1450–2. https://doi.org/10.1002/acn3.51067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kennedy M, Helfand BKI, Gou RY, Gartaganis SL, Webb M, Moccia JM, et al. Delirium in older patients with COVID-19 presenting to the emergency department. JAMA Netw Open. 2020;3(11):e2029540. https://doi.org/10.1001/jamanetworkopen.2020.29540.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Poloni TE, Carlos AF, Cairati M, Cutaia C, Medici V, Marelli E, et al. Prevalence and prognostic value of delirium as the initial presentation of COVID-19 in the elderly with dementia: an Italian retrospective study. EClinicalMedicine. 2020;26:100490. https://doi.org/10.1016/j.eclinm.2020.100490.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Fabrazzo M, Russo A, Luciano M, Camerlengo A, Catapano P, Amoroso B, et al. Delirium and psychiatric sequelae associated to SARS-coV‑2 in asymptomatic patients with psychiatric history and mild cognitive impairment as risk factors: three case reports. Front Psychiatry. 2022;13:868286. https://doi.org/10.3389/fpsyt.2022.868286.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zazzara MB, Penfold RS, Roberts AL, Lee KA, Dooley H, Sudre CH, et al. Probable delirium is a presenting symptom of COVID-19 in frail, older adults: a cohort study of 322 hospitalised and 535 community-based older adults. Age Ageing. 2021;50(1):40–8. https://doi.org/10.1093/ageing/afaa223.

    Article  PubMed  Google Scholar 

  99. Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, et al. Neurologic features in severe SARS-CoV‑2 infection. N Engl J Med. 2020;382(23):2268–70. https://doi.org/10.1056/NEJMc2008597.

    Article  PubMed  Google Scholar 

  100. Ramage AE. Potential for cognitive communication impairment in COVID-19 survivors: a call to action for speech-language pathologists. Am J Speech Lang Pathol. 2020;29(4):1821–32. https://doi.org/10.1044/2020_ajslp-20-00147.

    Article  PubMed  Google Scholar 

  101. Rhally A, Griffa A, Kremer S, Uginet M, Breville G, Stancu P, et al. C‑reactive protein and white matter microstructural changes in COVID-19 patients with encephalopathy. J Neural Transm (Vienna). 2021;128(12):1899–906. https://doi.org/10.1007/s00702-021-02429-6.

    Article  CAS  PubMed  Google Scholar 

  102. Shah P, Patel J, Soror NN, Kartan R. Encephalopathy in COVID-19 patients. Cureus. 2021;13(7):e16620. https://doi.org/10.7759/cureus.16620.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Klein R, Soung A, Sissoko C, Nordvig A, Canoll P, Mariani M, et al. COVID-19 induces neuroinflammation and loss of hippocampal neurogenesis. Res Sq. 2021; https://doi.org/10.21203/rs.3.rs-1031824/v1.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lee MH, Perl DP, Nair G, Li W, Maric D, Murray H, et al. Microvascular injury in the brains of patients with Covid-19. N Engl J Med. 2021;384(5):481–3. https://doi.org/10.1056/NEJMc2033369.

    Article  PubMed  Google Scholar 

  105. Mukerji SS, Solomon IH. What can we learn from brain autopsies in COVID-19? Neurosci Lett. 2021;742:135528. https://doi.org/10.1016/j.neulet.2020.135528.

    Article  CAS  PubMed  Google Scholar 

  106. Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, et al. Neuroinvasion of SARS-CoV‑2 in human and mouse brain. J Exp Med. 2021; https://doi.org/10.1084/jem.20202135. 218(3).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Solomon IH, Normandin E, Bhattacharyya S, Mukerji SS, Keller K, Ali AS, et al. Neuropathological features of Covid-19. N Engl J Med. 2020;383(10):989–92. https://doi.org/10.1056/NEJMc2019373.

    Article  PubMed  Google Scholar 

  108. Poloni TE, Medici V, Moretti M, Visonà SD, Cirrincione A, Carlos AF, et al. COVID-19-related neuropathology and microglial activation in elderly with and without dementia. Brain Pathol. 2021;31(5):e12997. https://doi.org/10.1111/bpa.12997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang AC, Kern F, Losada PM, Agam MR, Maat CA, Schmartz GP, et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature. 2021;595(7868):565–71. https://doi.org/10.1038/s41586-021-03710-0.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  110. Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J. 2020;41(32):3038–44. https://doi.org/10.1093/eurheartj/ehaa623.

    Article  CAS  PubMed  Google Scholar 

  111. Sfera A, Osorio C, Rahman L, Zapata-Martín Del Campo CM, Maldonado JC, Jafri N, et al. PTSD as an endothelial disease: insights from COVID-19. Front Cell Neurosci. 2021;15:770387. https://doi.org/10.3389/fncel.2021.770387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jarrott B, Head R, Pringle KG, Lumbers ER, Martin JH. “LONG COVID”—a hypothesis for understanding the biological basis and pharmacological treatment strategy. Pharmacol Res Perspect. 2022;10(1):e911. https://doi.org/10.1002/prp2.911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Krasemann S, Haferkamp U, Pfefferle S, Woo MS, Heinrich F, Schweizer M, et al. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV‑2. Stem Cell Reports. 2022;17(2):307–20. https://doi.org/10.1016/j.stemcr.2021.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lowenstein CJ, Solomon SD. Severe COVID-19 is a microvascular disease. Circulation. 2020;142(17):1609–11. https://doi.org/10.1161/circulationaha.120.050354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Whitmore HAB, Kim LA. Understanding the role of blood vessels in the neurologic manifestations of Coronavirus disease 2019 (COVID-19). Am J Pathol. 2021;191(11):1946–54. https://doi.org/10.1016/j.ajpath.2021.04.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Østergaard L. SARS coV‑2 related microvascular damage and symptoms during and after COVID-19: consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep. 2021;9(3):e14726. https://doi.org/10.14814/phy2.14726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Steardo L, Steardo L Jr., Zorec R, Verkhratsky A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol (Oxf). 2020;229(3):e13473. https://doi.org/10.1111/apha.13473.

    Article  CAS  PubMed  Google Scholar 

  118. Dąbrowska E, Galińska-Skok B, Waszkiewicz N. Depressive and neurocognitive disorders in the context of the inflammatory background of COVID-19. Life (Basel). 2021; https://doi.org/10.3390/life11101056. 11(10).

    Article  PubMed  Google Scholar 

  119. von Meijenfeldt FA, Havervall S, Adelmeijer J, Thalin C, Lisman T. Persistent endotheliopathy in the pathogenesis of long COVID syndrome: comment from von Meijenfeldt et al. J Thromb Haemost. 2022;20(1):267–9. https://doi.org/10.1111/jth.15580.

    Article  CAS  Google Scholar 

  120. Fogarty H, Townsend L, Morrin H, Ahmad A, Comerford C, Karampini E, et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost. 2021;19(10):2546–53. https://doi.org/10.1111/jth.15490.

    Article  CAS  PubMed  Google Scholar 

  121. Alemanno F, Houdayer E, Parma A, Spina A, Del Forno A, Scatolini A, et al. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: A COVID-rehabilitation unit experience. PLoS ONE. 2021;16(2):e246590. https://doi.org/10.1371/journal.pone.0246590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hosp JA, Dressing A, Blazhenets G, Bormann T, Rau A, Schwabenland M, et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain. 2021;144(4):1263–76. https://doi.org/10.1093/brain/awab009.

    Article  PubMed  Google Scholar 

  123. Beaud V, Crottaz-Herbette S, Dunet V, Vaucher J, Bernard-Valnet R, Du Pasquier R, et al. Pattern of cognitive deficits in severe COVID-19. J Neurol Neurosurg Psychiatry. 2021;92(5):567–8. https://doi.org/10.1136/jnnp-2020-325173.

    Article  PubMed  Google Scholar 

  124. Crivelli L, Palmer K, Calandri I, Guekht A, Beghi E, Carroll W, et al. Changes in cognitive functioning after COVID-19: a systematic review and meta-analysis. Alzheimers Dement. 2022; https://doi.org/10.1002/alz.12644.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Vialatte de Pémille C, Ray A, Michel A, Stefano F, Yim T, Bruel C, et al. Prevalence and prospective evaluation of cognitive dysfunctions after SARS due to SARS-coV‑2 virus. The COgnitiVID study. Rev Neurol (Paris). 2022; https://doi.org/10.1016/j.neurol.2022.03.014.

    Article  PubMed  Google Scholar 

  126. Lamprecht B. Is there a post-COVID syndrome? Pneumol (Berl). 2020; https://doi.org/10.1007/s10405-020-00347-0. 1–4.

    Article  Google Scholar 

  127. Mikkelsen ME, Christie JD, Lanken PN, Biester RC, Thompson BT, Bellamy SL, et al. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med. 2012;185(12):1307–15. https://doi.org/10.1164/rccm.201111-2025OC.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Salluh JI, Wang H, Schneider EB, Nagaraja N, Yenokyan G, Damluji A, et al. Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ. 2015;350:h2538. https://doi.org/10.1136/bmj.h2538.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Graham EL, Clark JR, Orban ZS, Lim PH, Szymanski AL, Taylor C, et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 “long haulers”. Ann Clin Transl Neurol. 2021;8(5):1073–85. https://doi.org/10.1002/acn3.51350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mazza MG, Palladini M, De Lorenzo R, Magnaghi C, Poletti S, Furlan R, et al. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun. 2021;94:138–47. https://doi.org/10.1016/j.bbi.2021.02.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Poletti S, Palladini M, Mazza MG, De Lorenzo R, Furlan R, Ciceri F, et al. Long-term consequences of COVID-19 on cognitive functioning up to 6 months after discharge: role of depression and impact on quality of life. Eur Arch Psychiatry Clin Neurosci. 2021; https://doi.org/10.1007/s00406-021-01346-9. 1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kas A, Soret M, Pyatigoskaya N, Habert MO, Hesters A, Le Guennec L, et al. The cerebral network of COVID-19-related encephalopathy: a longitudinal voxel-based 18F-FDG-PET study. Eur J Nucl Med Mol Imaging. 2021;48(8):2543–57. https://doi.org/10.1007/s00259-020-05178-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ferrucci R, Dini M, Rosci C, Capozza A, Groppo E, Reitano MR, et al. One-year cognitive follow-up of COVID-19 hospitalized patients. Eur J Neurol. 2022;29(7):2006–14. https://doi.org/10.1111/ene.15324.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Miskowiak KW, Fugledalen L, Jespersen AE, Sattler SM, Podlekareva D, Rungby J, et al. Trajectory of cognitive impairments over 1 year after COVID-19 hospitalisation: pattern, severity, and functional implications. Eur Neuropsychopharmacol. 2022;59:82–92. https://doi.org/10.1016/j.euroneuro.2022.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. PHOSP-COVID Collaboration Group.. Clinical characteristics with inflammation profiling of long COVID and association with 1‑year recovery following hospitalisation in the UK: a prospective observational study. Lancet Respir Med. 2022; https://doi.org/10.1016/s2213-2600(22)00127-8.

    Article  Google Scholar 

  136. Seeßle J, Waterboer T, Hippchen T, Simon J, Kirchner M, Lim A, et al. Persistent symptoms in adult patients 1 year after Coronavirus disease 2019 (COVID-19): a prospective cohort study. Clin Infect Dis. 2022;74(7):1191–8. https://doi.org/10.1093/cid/ciab611.

    Article  CAS  PubMed  Google Scholar 

  137. Hampshire A, Trender W, Chamberlain SR, Jolly AE, Grant JE, Patrick F, et al. Cognitive deficits in people who have recovered from COVID-19. EClinicalMedicine. 2021;39:101044. https://doi.org/10.1016/j.eclinm.2021.101044.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Fernández-Castañeda A, Lu P, Geraghty AC, Song E, Lee MH, Wood J et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell. 2022;185(14):2452–68.e16. https://doi.org/10.1016/j.cell.2022.06.008.

  139. Serrano-Castro PJ, Garzón-Maldonado FJ, Casado-Naranjo I, Ollero-Ortiz A, Mínguez-Castellanos A, Iglesias-Espinosa M, et al. The cognitive and psychiatric subacute impairment in severe Covid-19. Sci Rep. 2022;12(1):3563. https://doi.org/10.1038/s41598-022-07559-9.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  140. Ferrando SJ, Dornbush R, Lynch S, Shahar S, Klepacz L, Karmen CL, et al. Neuropsychological, medical, and psychiatric findings after recovery from acute COVID-19: a cross-sectional study. J Acad Consult Liaison Psychiatry. 2022; https://doi.org/10.1016/j.jaclp.2022.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Zhou H, Lu S, Chen J, Wei N, Wang D, Lyu H, et al. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res. 2020;129:98–102. https://doi.org/10.1016/j.jpsychires.2020.06.022.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ceban F, Ling S, Lui LMW, Lee Y, Gill H, Teopiz KM, et al. Fatigue and cognitive impairment in post-COVID-19 syndrome: a systematic review and meta-analysis. Brain Behav Immun. 2021;101:93–135. https://doi.org/10.1016/j.bbi.2021.12.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Apple AC, Oddi A, Peluso MJ, Asken BM, Henrich TJ, Kelly JD, et al. Risk factors and abnormal cerebrospinal fluid associate with cognitive symptoms after mild COVID-19. Ann Clin Transl Neurol. 2022;9(2):221–6. https://doi.org/10.1002/acn3.51498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Farooqi M, Khan A, Jacobs A, D’Souza V, Consiglio F, Karmen CL, et al. Examining the long-term sequelae of SARS-coV 2 infection in patients seen in an outpatient psychiatric department. Neuropsychiatr Dis Treat. 2022;18:1259–68. https://doi.org/10.2147/ndt.S357262.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Fernández-de-Las-Peñas C, Martín-Guerrero JD, Cancela-Cilleruelo I, Rodríguez-Jiménez J, Moro-López-Menchero P, Pellicer-Valero OJ. Exploring trajectory recovery curves of post-COVID cognitive symptoms in previously hospitalized COVID-19 survivors: the LONG-COVID-EXP-CM multicenter study. J Neurol. 2022; https://doi.org/10.1007/s00415-022-11176-x. 1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Guedj E, Campion JY, Dudouet P, Kaphan E, Bregeon F, Tissot-Dupont H, et al. (18)F-FDG brain PET hypometabolism in patients with long COVID. Eur J Nucl Med Mol Imaging. 2021;48(9):2823–33. https://doi.org/10.1007/s00259-021-05215-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Guedj E, Million M, Dudouet P, Tissot-Dupont H, Bregeon F, Cammilleri S, et al. (18)F-FDG brain PET hypometabolism in post-SARS-CoV‑2 infection: substrate for persistent/delayed disorders? Eur J Nucl Med Mol Imaging. 2021;48(2):592–5. https://doi.org/10.1007/s00259-020-04973-x.

    Article  CAS  PubMed  Google Scholar 

  148. Hugon J, Msika EF, Queneau M, Farid K, Paquet C. Long COVID: cognitive complaints (brain fog) and dysfunction of the cingulate cortex. J Neurol. 2022;269(1):44–6. https://doi.org/10.1007/s00415-021-10655-x.

    Article  CAS  PubMed  Google Scholar 

  149. Hugon J, Queneau M, Sanchez Ortiz M, Msika EF, Farid K, Paquet C. Cognitive decline and brainstem hypometabolism in long COVID: a case series. Brain Behav. 2022;12(4):e2513. https://doi.org/10.1002/brb3.2513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Verger A, Kas A, Dudouet P, Goehringer F, Salmon-Ceron D, Guedj E. Visual interpretation of brain hypometabolism related to neurological long COVID: a French multicentric experience. Eur J Nucl Med Mol Imaging. 2022;49(9):3197–202. https://doi.org/10.1007/s00259-022-05753-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Di Stadio A, Brenner MJ, De Luca P, Albanese M, D’Ascanio L, Ralli M, et al. Olfactory dysfunction, headache, and mental clouding in adults with long-COVID-19: what is the link between cognition and olfaction? A cross-sectional study. Brain Sci. 2022; https://doi.org/10.3390/brainsci12020154. 12(2).

    Article  PubMed  PubMed Central  Google Scholar 

  152. García-Grimshaw M, Chirino-Pérez A, Flores-Silva FD, Valdés-Ferrer SI, Vargas-Martínez M, Jiménez-Ávila AI, et al. Critical role of acute hypoxemia on the cognitive impairment after severe COVID-19 pneumonia: a multivariate causality model analysis. Neurol Sci. 2022;43(4):2217–29. https://doi.org/10.1007/s10072-021-05798-8.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Dondaine T, Ruthmann F, Vuotto F, Carton L, Gelé P, Faure K, et al. Long-term cognitive impairments following COVID-19: a possible impact of hypoxia. J Neurol. 2022; https://doi.org/10.1007/s00415-022-11077-z. 1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Radnis C, Qiu S, Jhaveri M, Da Silva I, Szewka A, Koffman L. Radiographic and clinical neurologic manifestations of COVID-19 related hypoxemia. J Neurol Sci. 2020;418:117119. https://doi.org/10.1016/j.jns.2020.117119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Manera MR, Fiabane E, Pain D, Aiello EN, Radici A, Ottonello M, et al. Clinical features and cognitive sequelae in COVID-19: a retrospective study on N=152 patients. Neurol Sci. 2022;43(1):45–50. https://doi.org/10.1007/s10072-021-05744-8.

    Article  PubMed  Google Scholar 

  156. Taskiran-Sag A, Eroglu E, Ozulken K, Canlar S, Poyraz BM, Sekerlisoy MB, et al. Headache and cognitive disturbance correlate with ganglion cell layer thickness in patients who recovered from COVID-19. Clin Neurol Neurosurg. 2022;217:107263. https://doi.org/10.1016/j.clineuro.2022.107263.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Ortelli P, Ferrazzoli D, Sebastianelli L, Maestri R, Dezi S, Spampinato D, et al. Altered motor cortex physiology and dysexecutive syndrome in patients with fatigue and cognitive difficulties after mild COVID-19. Eur J Neurol. 2022;29(6):1652–62. https://doi.org/10.1111/ene.15278.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Mavrikaki M, Lee JD, Solomon IH, Slack FJ. Severe COVID-19 induces molecular signatures of aging in the human brain. medRxiv. 2021; https://doi.org/10.1101/2021.11.24.21266779.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Fernández RS, Crivelli L, Guimet NM, Allegri RF, Pedreira ME. Psychological distress associated with COVID-19 quarantine: latent profile analysis, outcome prediction and mediation analysis. J Affect Disord. 2020;277:75–84. https://doi.org/10.1016/j.jad.2020.07.133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Joly F, Castel H, Tron L, Lange M, Vardy J. Potential effect of immunotherapy agents on cognitive function in cancer patients. J Natl Cancer Inst. 2020;112(2):123–7. https://doi.org/10.1093/jnci/djz168.

    Article  CAS  PubMed  Google Scholar 

  161. Sheth VS, Gauthier J. Taming the beast: CRS and ICANS after CAR T‑cell therapy for ALL. Bone Marrow Transplant. 2021;56(3):552–66. https://doi.org/10.1038/s41409-020-01134-4.

    Article  CAS  PubMed  Google Scholar 

  162. Lv L, Mao S, Dong H, Hu P, Dong R. Pathogenesis, assessments, and management of chemotherapy-related cognitive impairment (CRCI): an updated literature review. J Oncol. 2020;2020:3942439. https://doi.org/10.1155/2020/3942439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gibson EM, Monje M. Microglia in cancer therapy-related cognitive impairment. Trends Neurosci. 2021;44(6):441–51. https://doi.org/10.1016/j.tins.2021.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Delgado-Alonso C, Valles-Salgado M, Delgado-Álvarez A, Yus M, Gómez-Ruiz N, Jorquera M, et al. Cognitive dysfunction associated with COVID-19: a comprehensive neuropsychological study. J Psychiatr Res. 2022;150:40–6. https://doi.org/10.1016/j.jpsychires.2022.03.033.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Renaud-Charest O, Lui LMW, Eskander S, Ceban F, Ho R, Di Vincenzo JD, et al. Onset and frequency of depression in post-COVID-19 syndrome: a systematic review. J Psychiatr Res. 2021;144:129–37. https://doi.org/10.1016/j.jpsychires.2021.09.054.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Brown LA, Ballentine E, Zhu Y, McGinley EL, Pezzin L, Abramoff B. The unique contribution of depression to cognitive impairment in post-acute sequelae of SARS-coV‑2 infection. Brain Behav Immun Health. 2022;22:100460. https://doi.org/10.1016/j.bbih.2022.100460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liyanage-Don NA, Winawer MR, Hamberger MJ, Agarwal S, Trainor AR, Quispe KA, et al. Association of depression and COVID-induced PTSD with cognitive symptoms after COVID-19 illness. Gen Hosp Psychiatry. 2022;76:45–8. https://doi.org/10.1016/j.genhosppsych.2022.02.006.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Sia AL, Neo JE, Jen-Wei Tan B, Tan EK. “Brain fog” and COVID-19. Am J Med Sci. 2023;365(5):472–4. https://doi.org/10.1016/j.amjms.2023.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Finsterer J, Mehri S. Post-COVID ‘brain fog’ will clear up only through neuropsychological examination. Neurol Neurochir Pol. 2023; https://doi.org/10.5603/PJNNS.a2023.0032.

    Article  PubMed  Google Scholar 

  170. Krishnan K, Miller AK, Reiter K, Bonner-Jackson A. Neurocognitive profiles in patients with persisting cognitive symptoms associated with COVID-19. Arch Clin Neuropsychol. 2022;37(4):729–37. https://doi.org/10.1093/arclin/acac004.

    Article  PubMed  Google Scholar 

  171. Kyzar EJ, Purpura LJ, Shah J, Cantos A, Nordvig AS, Yin MT. Anxiety, depression, insomnia, and trauma-related symptoms following COVID-19 infection at long-term follow-up. Brain Behav Immun Health. 2021;16:100315. https://doi.org/10.1016/j.bbih.2021.100315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Tu Y, Zhang Y, Li Y, Zhao Q, Bi Y, Lu X, et al. Post-traumatic stress symptoms in COVID-19 survivors: a self-report and brain imaging follow-up study. Mol Psychiatry. 2021;26(12):7475–80. https://doi.org/10.1038/s41380-021-01223-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Huang L, Yao Q, Gu X, Wang Q, Ren L, Wang Y, et al. 1‑year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. Lancet. 2021;398(10302):747–58. https://doi.org/10.1016/s0140-6736(21)01755-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Huang L, Li X, Gu X, Zhang H, Ren L, Guo L, et al. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. Lancet Respir Med. 2022; https://doi.org/10.1016/s2213-2600(22)00126-6.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Deng J, Zhou F, Hou W, Silver Z, Wong CY, Chang O, et al. The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: a meta-analysis. Ann N Y Acad Sci. 2021;1486(1):90–111. https://doi.org/10.1111/nyas.14506.

    Article  CAS  ADS  PubMed  Google Scholar 

  176. Guo Q, Zheng Y, Shi J, Wang J, Li G, Li C, et al. Immediate psychological distress in quarantined patients with COVID-19 and its association with peripheral inflammation: a mixed-method study. Brain Behav Immun. 2020;88:17–27. https://doi.org/10.1016/j.bbi.2020.05.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lamontagne SJ, Winters MF, Pizzagalli DA, Olmstead MC. Post-acute sequelae of COVID-19: evidence of mood & cognitive impairment. Brain Behav Immun Health. 2021;17:100347. https://doi.org/10.1016/j.bbih.2021.100347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Khubchandani J, Price JH, Sharma S, Wiblishauser MJ, Webb FJ. COVID-19 infection survivors and the risk of depression and anxiety symptoms: a nationwide study of adults in the United States. Eur J Intern Med. 2022;97:119–21. https://doi.org/10.1016/j.ejim.2022.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6‑month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8(5):416–27. https://doi.org/10.1016/s2215-0366(21)00084-5.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Jacob L, Koyanagi A, Smith L, Bohlken J, Haro JM, Kostev K. No significant association between COVID-19 diagnosis and the incidence of depression and anxiety disorder? A retrospective cohort study conducted in Germany. J Psychiatr Res. 2022;147:79–84. https://doi.org/10.1016/j.jpsychires.2022.01.013.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Dong F, Liu HL, Dai N, Yang M, Liu JP. A living systematic review of the psychological problems in people suffering from COVID-19. J Affect Disord. 2021;292:172–88. https://doi.org/10.1016/j.jad.2021.05.060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Perlis RH, Ognyanova K, Santillana M, Baum MA, Lazer D, Druckman J et al. Association of Acute Symptoms of COVID-19 and Symptoms of Depression in Adults. JAMA network open. 2021;4(3):e213223‑e. https://doi.org/10.1001/jamanetworkopen.2021.3223.

  183. Evans RA, McAuley H, Harrison EM, Shikotra A, Singapuri A, Sereno M, et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study. Lancet Respir Med. 2021;9(11):1275–87. https://doi.org/10.1016/s2213-2600(21)00383-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bourmistrova NW, Solomon T, Braude P, Strawbridge R, Carter B. Long-term effects of COVID-19 on mental health: a systematic review. J Affect Disord. 2022;299:118–25. https://doi.org/10.1016/j.jad.2021.11.031.

    Article  CAS  PubMed  Google Scholar 

  185. Serrano García A, Montánchez Mateo J, Franch Pato CM, Gómez Martínez R, García Vázquez P, González Rodríguez I. Interleukin 6 and depression in patients affected by Covid-19. Med Clin (Engl Ed). 2021;156(7):332–5. https://doi.org/10.1016/j.medcle.2020.11.013.

    Article  PubMed  Google Scholar 

  186. Kahve AC, Kaya H, Okuyucu M, Goka E, Barun S, Hacimusalar Y. Do anxiety and depression levels affect the inflammation response in patients hospitalized for COVID-19. Psychiatry Investig. 2021;18(6):505–12. https://doi.org/10.30773/pi.2021.0029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mazza MG, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, et al. Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behav Immun. 2020;89:594–600. https://doi.org/10.1016/j.bbi.2020.07.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Clemente I, Sinatti G, Cirella A, Santini SJ, Balsano C. Alteration of inflammatory parameters and psychological post-traumatic syndrome in long-COVID patients. Int J Environ Res Public Health. 2022; https://doi.org/10.3390/ijerph19127103. 19(12).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Fernández-de-Las-Peñas C, Martín-Guerrero JD, Cancela-Cilleruelo I, Moro-López-Menchero P, Rodríguez-Jiménez J, Pellicer-Valero OJ. Trajectory curves of post-COVID anxiety/depressive symptoms and sleep quality in previously hospitalized COVID-19 survivors: the LONG-COVID-EXP-CM multicenter study. Psychol Med. 2022; https://doi.org/10.1017/s003329172200006x. 1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Iglesias-González M, Boigues M, Sanagustin D, Giralt-López M, Cuevas-Esteban J, Martínez-Cáceres E, et al. Association of serum interleukin‑6 and C‑reactive protein with depressive and adjustment disorders in COVID-19 inpatients. Brain Behav Immun Health. 2022;19:100405. https://doi.org/10.1016/j.bbih.2021.100405.

    Article  CAS  PubMed  Google Scholar 

  191. Benedetti F, Palladini M, Paolini M, Melloni E, Vai B, De Lorenzo R, et al. Brain correlates of depression, post-traumatic distress, and inflammatory biomarkers in COVID-19 survivors: a multimodal magnetic resonance imaging study. Brain Behav Immun Health. 2021;18:100387. https://doi.org/10.1016/j.bbih.2021.100387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hanson BA, Visvabharathy L, Ali ST, Kang AK, Patel TR, Clark JR, et al. Plasma biomarkers of neuropathogenesis in hospitalized patients with COVID-19 and those with postacute sequelae of SARS-coV‑2 infection. Neurol Neuroimmunol Neuroinflamm. 2022; https://doi.org/10.1212/nxi.0000000000001151. 9(3).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Speth MM, Singer-Cornelius T, Oberle M, Gengler I, Brockmeier SJ, Sedaghat AR. Mood, anxiety and olfactory dysfunction in COVID-19: evidence of central nervous system involvement? Laryngoscope. 2020;130(11):2520–5. https://doi.org/10.1002/lary.28964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kiecolt-Glaser JK, Derry HM, Fagundes CP. Inflammation: depression fans the flames and feasts on the heat. Am J Psychiatry. 2015;172(11):1075–91. https://doi.org/10.1176/appi.ajp.2015.15020152.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Hodes GE, Kana V, Menard C, Merad M, Russo SJ. Neuroimmune mechanisms of depression. Nat Neurosci. 2015;18(10):1386–93. https://doi.org/10.1038/nn.4113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mousten IV, Sørensen NV, Christensen RHB, Benros ME. Cerebrospinal fluid biomarkers in patients with unipolar depression compared with healthy control individuals: a systematic review and meta-analysis. JAMA Psychiatry. 2022;79(6):571–81. https://doi.org/10.1001/jamapsychiatry.2022.0645.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Himmerich H, Patsalos O, Lichtblau N, Ibrahim MAA, Dalton B. Cytokine research in depression: principles, challenges, and open questions. Front Psychiatry. 2019;10:30. https://doi.org/10.3389/fpsyt.2019.00030.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Köhler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135(5):373–87. https://doi.org/10.1111/acps.12698.

    Article  CAS  PubMed  Google Scholar 

  199. Liu Y, Ho RC, Mak A. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin‑2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord. 2012;139(3):230–9. https://doi.org/10.1016/j.jad.2011.08.003.

    Article  CAS  PubMed  Google Scholar 

  200. Vian J, Pereira C, Chavarria V, Köhler C, Stubbs B, Quevedo J, et al. The renin-angiotensin system: a possible new target for depression. BMC Med. 2017;15(1):144. https://doi.org/10.1186/s12916-017-0916-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Haapakoski R, Ebmeier KP, Alenius H, Kivimäki M. Innate and adaptive immunity in the development of depression: an update on current knowledge and technological advances. Prog Neuropsychopharmacol Biol Psychiatry. 2016;66:63–72. https://doi.org/10.1016/j.pnpbp.2015.11.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhang N, Yao L, Wang P, Liu Z. Immunoregulation and antidepressant effect of ketamine. Transl Neurosci. 2021;12(1):218–36. https://doi.org/10.1515/tnsci-2020-0167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lyons D, Frampton M, Naqvi S, Donohoe D, Adams G, Glynn K. Fallout from the COVID-19 pandemic—should we prepare for a tsunami of post viral depression? Ir J Psychol Med. 2020;37(4):295–300. https://doi.org/10.1017/ipm.2020.40.

    Article  CAS  PubMed  Google Scholar 

  204. Alpert O, Begun L, Garren P, Solhkhah R. Cytokine storm induced new onset depression in patients with COVID-19. A new look into the association between depression and cytokines—two case reports. Brain Behav Immun Health. 2020;9:100173. https://doi.org/10.1016/j.bbih.2020.100173.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22–34. https://doi.org/10.1038/nri.2015.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Lorkiewicz P, Waszkiewicz N. Biomarkers of post-COVID depression. JCM. 2021;10(18):4142. https://doi.org/10.3390/jcm10184142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ramiro S, Mostard RLM, Magro-Checa C, van Dongen CMP, Dormans T, Buijs J, et al. Historically controlled comparison of glucocorticoids with or without tocilizumab versus supportive care only in patients with COVID-19-associated cytokine storm syndrome: results of the CHIC study. Ann Rheum Dis. 2020;79(9):1143–51. https://doi.org/10.1136/annrheumdis-2020-218479.

    Article  CAS  PubMed  Google Scholar 

  208. Benedetti F, Mazza M, Cavalli G, Ciceri F, Dagna L, Rovere-Querini P. Can cytokine blocking prevent depression in COVID-19 survivors? J Neuroimmune Pharmacol. 2021;16(1):1–3. https://doi.org/10.1007/s11481-020-09966-z.

    Article  PubMed  Google Scholar 

  209. Janssen MT, Ramiro S, Mostard RL, Magro-Checa C, Landewé RB. Three-month and six-month outcomes of patients with COVID-19 associated hyperinflammation treated with short-term immunosuppressive therapy: follow-up of the CHIC study. RMD Open. 2021; https://doi.org/10.1136/rmdopen-2021-001906. 7(3).

    Article  PubMed  Google Scholar 

  210. Tang SW, Leonard BE, Helmeste DM. Long COVID, neuropsychiatric disorders, psychotropics, present and future. Acta Neuropsychiatr. 2022;34(3):109–26. https://doi.org/10.1017/neu.2022.6.

    Article  CAS  PubMed  Google Scholar 

  211. Jellinger KA. Pathomechanisms of vascular depression in older adults. Int J Mol Sci. 2021; https://doi.org/10.3390/ijms23010308.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Xu Z, Wang J, Lyu H, Wang R, Hu Y, Guo Z, et al. Alterations of white matter microstructure in subcortical vascular mild cognitive impairment with and without depressive symptoms. J Alzheimers Dis. 2020;73(4):1565–73. https://doi.org/10.3233/jad-190890.

    Article  PubMed  Google Scholar 

  213. Brunet A, Rivest-Beauregard M, Lonergan M, Cipolletta S, Rasmussen A, Meng X, et al. PTSD is not the emblematic disorder of the COVID-19 pandemic; adjustment disorder is. Bmc Psychiatry. 2022;22(1):300. https://doi.org/10.1186/s12888-022-03903-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Suthaharan P, Reed E, Leptourgos P, Kenney J, Uddenberg S, Mathys C, et al. Paranoia and belief updating during a crisis. Res Sq. 2021; https://doi.org/10.21203/rs.3.rs-145987/v1.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Łoś K, Kulikowska J, Waszkiewicz N. The impact of the COVID-19 virus pandemic on the incidence of first psychotic spectrum disorders. Int J Environ Res Public Health. 2022; https://doi.org/10.3390/ijerph19073781. 19(7).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Mourani SC, Khoury R, Ghossoub E. Mechanisms of new-onset psychosis during the COVID-19 pandemic: what ignited the fire? Ann Clin Psychiatry. 2022;34(2):123–35. https://doi.org/10.12788/acp.0065.

    Article  PubMed  Google Scholar 

  217. Smith CM, Gilbert EB, Riordan PA, Helmke N, von Isenburg M, Kincaid BR, et al. COVID-19-associated psychosis: a systematic review of case reports. Gen Hosp Psychiatry. 2021;73:84–100. https://doi.org/10.1016/j.genhosppsych.2021.10.003.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Podury S, Srivastava S, Khan E, Kakara M, Tandon M, Shrestha AK, et al. Relevance of CSF, serum and neuroimaging markers in CNS and PNS manifestation in COVID-19: a systematic review of case report and case series. Brain Sci. 2021; https://doi.org/10.3390/brainsci11101354. 11(10).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Elkhaled W, Abid BF, Akhtar N, Abukamar MR, Ibrahim WH. A 23-year-old man with SARS-coV‑2 infection who presented with auditory hallucinations and imaging findings of cytotoxic lesions of the corpus callosum (CLOCC). Am J Case Rep. 2020;21:e928798. https://doi.org/10.12659/ajcr.928798.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Sen M, Yesilkaya UH, Balcioglu YH. SARS-CoV-2-associated first episode of acute mania with psychotic features. J Clin Neurosci. 2021;87:29–31. https://doi.org/10.1016/j.jocn.2021.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Ariza-Varón M, Beltrán MA, Marín-Medina DS, González AF, Ávila AM. Psychosis associated with suspected SARS-CoV‑2 encephalitis with response to steroids: a case report. Infect Dis (Lond). 2021; https://doi.org/10.1080/23744235.2021.1977381. 1–5.

    Article  PubMed  Google Scholar 

  222. Bernard-Valnet R, Pizzarotti B, Anichini A, Demars Y, Russo E, Schmidhauser M et al. Two patients with acute meningoencephalitis concomitant with SARS-CoV‑2 infection. European Journal of Neurology. 2020;27(9):e43–e4. https://doi.org/10.1111/ene.14298.

  223. McAlpine LS, Lifland B, Check JR, Angarita GA, Ngo TT, Pleasure SJ, et al. Remission of subacute psychosis in a COVID-19 patient with an antineuronal autoantibody after treatment with intravenous immunoglobulin. Biol Psychiatry. 2021;90(4):e23–e6. https://doi.org/10.1016/j.biopsych.2021.03.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Panariello A, Bassetti R, Radice A, Rossotti R, Puoti M, Corradin M, et al. Anti-NMDA receptor encephalitis in a psychiatric Covid-19 patient: a case report. Brain Behav Immun. 2020;87:179–81. https://doi.org/10.1016/j.bbi.2020.05.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Caan MP, Lim CT, Howard M. A case of catatonia in a man with COVID-19. Psychosomatics. 2020;61(5):556–60. https://doi.org/10.1016/j.psym.2020.05.021.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Majadas S, Pérez J, Casado-Espada NM, Zambrana A, Bullón A, Roncero C. Case with psychotic disorder as a clinical presentation of COVID-19. Psychiatry Clin Neurosci. 2020;74(10):551–2. https://doi.org/10.1111/pcn.13107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Jozuka R, Kimura H, Uematsu T, Fujigaki H, Yamamoto Y, Kobayashi M, et al. Severe and long-lasting neuropsychiatric symptoms after mild respiratory symptoms caused by COVID-19: a case report. Neuropsychopharmacol Rep. 2021; https://doi.org/10.1002/npr2.12222.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Panariello F, Cellini L, Speciani M, De Ronchi D, Atti AR. How does SARS-CoV‑2 affect the central nervous system? A working hypothesis. Front Psychiatry. 2020; https://doi.org/10.3389/fpsyt.2020.582345. 11.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Alvarez-Cisneros T, Lara-Reyes A, Sansón-Tinoco S. Hiccups and psychosis: two atypical presentations of COVID-19. Int J Emerg Med. 2021;14(1):8. https://doi.org/10.1186/s12245-021-00333-0.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Ferrando SJ, Klepacz L, Lynch S, Tavakkoli M, Dornbush R, Baharani R, et al. COVID-19 psychosis: a potential new neuropsychiatric condition triggered by novel Coronavirus infection and the inflammatory response? Psychosomatics. 2020;61(5):551–5. https://doi.org/10.1016/j.psym.2020.05.012.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Mollà Roig P. Brief reactive psychosis to quarantine due to a positive PCR for SARS-CoV-2: Presentation of a clinical case. Psiquiatri’a. Biologica. 2021;28(1):22–4. https://doi.org/10.1016/j.psiq.2020.10.003.

    Article  Google Scholar 

  232. Chacko M, Job A, Caston F 3rd, George P, Yacoub A, Cáceda R. COVID-19-induced psychosis and suicidal behavior: case report. Sn Compr Clin Med. 2020; https://doi.org/10.1007/s42399-020-00530-7. 1–5.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Lorenzo-Villalba N, Jannot X, Syrovatkova A, Michel V, Andrès E. SARS-CoV‑2 infection and psychiatric manifestations in a previous healthy patient. Caspian J Intern Med. 2020;11(Suppl 1):566–8. https://doi.org/10.22088/cjim.11.0.566.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Smith CM, Komisar JR, Mourad A, Kincaid BR. COVID-19-associated brief psychotic disorder. BMJ Case Rep. 2020; https://doi.org/10.1136/bcr-2020-236940. 13(8).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Brown E, Gray R, Lo Monaco S, O’Donoghue B, Nelson B, Thompson A, et al. The potential impact of COVID-19 on psychosis: a rapid review of contemporary epidemic and pandemic research. Schizophr Res. 2020;222:79–87. https://doi.org/10.1016/j.schres.2020.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Watson CJ, Thomas RH, Solomon T, Michael BD, Nicholson TR, Pollak TA. COVID-19 and psychosis risk: real or delusional concern? Neurosci Lett. 2021; https://doi.org/10.1016/j.neulet.2020.135491. 741.

    Article  PubMed  Google Scholar 

  237. Taquet M, Sillett R, Zhu L, Mendel J, Camplisson I, Dercon Q, et al. Neurological and psychiatric risk trajectories after SARS-CoV‑2 infection: an analysis of 2‑year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry. 2022;9(10):815–27. https://doi.org/10.1016/s2215-0366(22)00260-7.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Menninger KA. Psychoses associated with influenca: i. general data: statistical analysis. JAMA. 1919;72(4):235–41. https://doi.org/10.1001/jama.1919.02610040001001.

    Article  Google Scholar 

  239. Nielsen PR, Benros ME, Mortensen PB. Hospital contacts with infection and risk of schizophrenia: a population-based cohort study with linkage of Danish national registers. Schizophr Bull. 2014;40(6):1526–32. https://doi.org/10.1093/schbul/sbt200.

    Article  PubMed  Google Scholar 

  240. Benros ME, Mortensen PB. Role of infection, autoimmunity, atopic disorders, and the immune system in schizophrenia: evidence from epidemiological and genetic studies. Curr Top Behav Neurosci. 2020;44:141–59. https://doi.org/10.1007/7854_2019_93.

    Article  CAS  PubMed  Google Scholar 

  241. Torrey EF, Peterson MR. The viral hypothesis of schizophrenia. Schizophr Bull. 1976;2(1):136–46. https://doi.org/10.1093/schbul/2.1.136.

    Article  CAS  PubMed  Google Scholar 

  242. Yolken RH, Torrey EF. Are some cases of psychosis caused by microbial agents? A review of the evidence. Mol Psychiatry. 2008;13(5):470–9. https://doi.org/10.1038/mp.2008.5.

    Article  CAS  PubMed  Google Scholar 

  243. Misiak B, Bartoli F, Carrà G, Stańczykiewicz B, Gładka A, Frydecka D, et al. Immune-inflammatory markers and psychosis risk: a systematic review and meta-analysis. Psychoneuroendocrinology. 2021;127:105200. https://doi.org/10.1016/j.psyneuen.2021.105200.

    Article  CAS  PubMed  Google Scholar 

  244. De Picker LJ, Morrens M, Chance SA, Boche D. Microglia and brain plasticity in acute psychosis and schizophrenia illness course: a meta-review. Front Psychiatry. 2017;8:238. https://doi.org/10.3389/fpsyt.2017.00238.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Müller N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull. 2018;44(5):973–82. https://doi.org/10.1093/schbul/sby024.

    Article  PubMed  PubMed Central  Google Scholar 

  246. Kempuraj D, Selvakumar GP, Ahmed ME, Raikwar SP, Thangavel R, Khan A, et al. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist. 2020;26(5–6):402–14. https://doi.org/10.1177/1073858420941476.

    Article  CAS  PubMed  Google Scholar 

  247. Orsolini L, Sarchione F, Vellante F, Fornaro M, Matarazzo I, Martinotti G, et al. Protein‑C reactive as biomarker predictor of schizophrenia phases of illness? A systematic review. Curr Neuropharmacol. 2018;16(5):583–606. https://doi.org/10.2174/1570159x16666180119144538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Marques TR, Ashok AH, Pillinger T, Veronese M, Turkheimer FE, Dazzan P, et al. Neuroinflammation in schizophrenia: meta-analysis of in vivo microglial imaging studies. Psychol Med. 2019;49(13):2186–96. https://doi.org/10.1017/s0033291718003057.

    Article  PubMed  Google Scholar 

  249. Weltgesundheitsorganisation. International Klassifikation psychischer Störungen. ICD-10 Kapitel V (F). Klinisch-diagnostische Leitlinien. Bern: Huber; 2005.

    Google Scholar 

  250. Joyce EM. Organic psychosis: the pathobiology and treatment of delusions. CNS Neurosci Ther. 2018;24(7):598–603. https://doi.org/10.1111/cns.12973.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Castanares-Zapatero D, Chalon P, Kohn L, Dauvrin M, Detollenaere J, Maertens de Noordhout C, et al. Pathophysiology and mechanism of long COVID: a comprehensive review. Ann Med. 2022;54(1):1473–87. https://doi.org/10.1080/07853890.2022.2076901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Cattaneo A, Ferrari C, Uher R, Bocchio-Chiavetto L, Riva MA, Pariante CM. Absolute measurements of macrophage migration inhibitory factor and Interleukin-1‑β mRNA levels accurately predict treatment response in depressed patients. Int J Neuropsychopharmacol. 2016; https://doi.org/10.1093/ijnp/pyw045. 19(10).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV‑2 infected patients. EBioMedicine. 2020;55:102763. https://doi.org/10.1016/j.ebiom.2020.102763.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Piéroni L, Bastard JP, Piton A, Khalil L, Hainque B, Jardel C. Interpretation of circulating C‑reactive protein levels in adults: body mass index and gender are a must. Diabetes Metab. 2003;29(2 Pt 1):133–8. https://doi.org/10.1016/s1262-3636(07)70019-8.

    Article  PubMed  Google Scholar 

  255. Sneller MC, Liang CJ, Marques AR, Chung JY, Shanbhag SM, Fontana JR, et al. A longitudinal study of COVID-19 sequelae and immunity: baseline findings. Ann Intern Med. 2022; https://doi.org/10.7326/m21-4905.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacol (Berl). 2016;233(9):1637–50. https://doi.org/10.1007/s00213-016-4218-9.

    Article  CAS  Google Scholar 

  257. Campos ACP, Antunes GF, Matsumoto M, Pagano RL, Martinez RCR. Neuroinflammation, pain and depression: an overview of the main findings. Front Psychol. 2020;11:1825. https://doi.org/10.3389/fpsyg.2020.01825.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Jansen van Vuren E, Steyn SF, Brink CB, Möller M, Viljoen FP, Harvey BH. The neuropsychiatric manifestations of COVID-19: interactions with psychiatric illness and pharmacological treatment. Biomed Pharmacother. 2021;135:111200. https://doi.org/10.1016/j.biopha.2020.111200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Kappelmann N, Dantzer R, Khandaker GM. Interleukin‑6 as potential mediator of long-term neuropsychiatric symptoms of COVID-19. Psychoneuroendocrinology. 2021;131:105295. https://doi.org/10.1016/j.psyneuen.2021.105295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Klein RS. Mechanisms of coronavirus infectious disease 2019-related neurologic diseases. Curr Opin Neurol. 2022;35(3):392–8. https://doi.org/10.1097/wco.0000000000001049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Mohammadkhanizadeh A, Nikbakht F. Investigating the potential mechanisms of depression induced-by COVID-19 infection in patients. J Clin Neurosci. 2021;91:283–7. https://doi.org/10.1016/j.jocn.2021.07.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Stefano GB, Büttiker P, Weissenberger S, Ptacek R, Wang F, Esch T, et al. Biomedical perspectives of acute and chronic neurological and neuropsychiatric sequelae of COVID-19. Curr Neuropharmacol. 2022;20(6):1229–40. https://doi.org/10.2174/1570159x20666211223130228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Tizenberg BN, Brenner LA, Lowry CA, Okusaga OO, Benavides DR, Hoisington AJ, et al. Biological and psychological factors determining neuropsychiatric outcomes in COVID-19. Curr Psychiatry Rep. 2021;23(10):68. https://doi.org/10.1007/s11920-021-01275-3.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Bechter K. The challenge of assessing mild neuroinflammation in severe mental disorders. Front Psychiatry. 2020;11:773. https://doi.org/10.3389/fpsyt.2020.00773.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Ritchie K, Chan D, Watermeyer T. The cognitive consequences of the COVID-19 epidemic: collateral damage? Brain Commun. 2020; https://doi.org/10.1093/braincomms/fcaa069. 2(2).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Zhou Y, Xu J, Hou Y, Leverenz JB, Kallianpur A, Mehra R, et al. Network medicine links SARS-coV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimers Res Ther. 2021;13(1):110. https://doi.org/10.1186/s13195-021-00850-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Sun B, Tang N, Peluso MJ, Iyer NS, Torres L, Donatelli JL, et al. Characterization and biomarker analyses of post-COVID-19 complications and neurological manifestations. Cells. 2021; https://doi.org/10.3390/cells10020386. 10(2).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Buonsenso D, Piazza M, Boner AL, Bellanti JA. Long COVID: a proposed hypothesis-driven model of viral persistence for the pathophysiology of the syndrome. Allergy Asthma Proc. 2022;43(3):187–93. https://doi.org/10.2500/aap.2022.43.220018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Files JK, Sarkar S, Fram TR, Boppana S, Sterrett S, Qin K, et al. Duration of post-COVID-19 symptoms is associated with sustained SARS-coV-2-specific immune responses. JCI Insight. 2021; https://doi.org/10.1172/jci.insight.151544. 6(15).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Visvabharathy L, Hanson B, Orban Z, Lim PH, Palacio NM, Jain R, et al. Neuro-COVID long-haulers exhibit broad dysfunction in T cell memory generation and responses to vaccination. medRxiv. 2021; https://doi.org/10.1101/2021.08.08.21261763.

    Article  Google Scholar 

  271. Proal AD, VanElzakker MB. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. Front Microbiol. 2021;12:698169. https://doi.org/10.3389/fmicb.2021.698169.

    Article  PubMed  PubMed Central  Google Scholar 

  272. Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, et al. Evolution of antibody immunity to SARS-CoV‑2. Nature. 2021;591(7851):639–44. https://doi.org/10.1038/s41586-021-03207-w.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  273. Gupta S, Parker J, Smits S, Underwood J, Dolwani S. Persistent viral shedding of SARS-CoV‑2 in faeces—a rapid review. Colorectal Dis. 2020;22(6):611–20. https://doi.org/10.1111/codi.15138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, Bullock TA, McGary HM, Khan JA, et al. The SARS-CoV‑2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol Dis. 2020;146:105131. https://doi.org/10.1016/j.nbd.2020.105131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Nuovo GJ, Magro C, Shaffer T, Awad H, Suster D, Mikhail S, et al. Endothelial cell damage is the central part of COVID-19 and a mouse model induced by injection of the S1 subunit of the spike protein. Ann Diagn Pathol. 2021;51:151682. https://doi.org/10.1016/j.anndiagpath.2020.151682.

    Article  PubMed  Google Scholar 

  276. Rhea EM, Logsdon AF, Hansen KM, Williams LM, Reed MJ, Baumann KK, et al. The S1 protein of SARS-CoV‑2 crosses the blood-brain barrier in mice. Nature Neuroscience. 2020. https://doi.org/10.1038/s41593-020-00771-8..

  277. Oh J, Cho W‑H, Barcelon E, Kim KH, Hong J, Lee SJ. SARS-CoV‑2 spike protein induces cognitive deficit and anxiety-like behavior in mouse via non-cell autonomous hippocampal neuronal death. Sci Rep. 2022;12(1):5496. https://doi.org/10.1038/s41598-022-09410-7.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  278. Paladino L, Vitale AM, Caruso Bavisotto C, de Conway Macario E, Cappello F, Macario AJL, et al. The role of molecular chaperones in virus infection and implications for understanding and treating COVID-19. J Clin Med. 2020; https://doi.org/10.3390/jcm9113518. 9(11).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Thye AY, Law JW, Tan LT, Pusparajah P, Ser HL, Thurairajasingam S, et al. Psychological symptoms in COVID-19 patients: insights into pathophysiology and risk factors of long COVID-19. Biology (Basel). 2022; https://doi.org/10.3390/biology11010061. 11(1).

    Article  PubMed  Google Scholar 

  280. Caspersen IH, Magnus P, Trogstad L. Excess risk and clusters of symptoms after COVID-19 in a large norwegian cohort. Eur J Epidemiol. 2022;37(5):539–48. https://doi.org/10.1007/s10654-022-00847-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Durstenfeld MS, Hsue PY, Peluso MJ, Deeks SG. Findings from mayo clinic’s post-COVID clinic: PASC phenotypes vary by sex and degree of IL‑6 elevation. Mayo Clin Proc. 2022;97(3):430–2. https://doi.org/10.1016/j.mayocp.2022.01.020.

    Article  CAS  PubMed  Google Scholar 

  282. Jennings G, Monaghan A, Xue F, Duggan E, Romero-Ortuño R. Comprehensive clinical characterisation of brain fog in adults reporting long COVID symptoms. J Clin Med. 2022; https://doi.org/10.3390/jcm11123440. 11(12).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Liu BM, Martins TB, Peterson LK, Hill HR. Clinical significance of measuring serum cytokine levels as inflammatory biomarkers in adult and pediatric COVID-19 cases: a review. Cytokine. 2021;142:155478. https://doi.org/10.1016/j.cyto.2021.155478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Fontana IC, Souza DG, Pellerin L, Souza DO, Zimmer ER. About the source and consequences of (18)F-FDG brain PET hypometabolism in short and long COVID-19. Eur J Nucl Med Mol Imaging. 2021;48(9):2674–5. https://doi.org/10.1007/s00259-021-05342-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET radiotracers and targets for imaging of neuroinflammation in neurodegenerative diseases: outlook beyond TSPO. Mol Imaging. 2018;17:1536012118792317. https://doi.org/10.1177/1536012118792317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Meyer JH, Cervenka S, Kim MJ, Kreisl WC, Henter ID, Innis RB. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry. 2020;7(12):1064–74. https://doi.org/10.1016/s2215-0366(20)30255-8.

    Article  PubMed  PubMed Central  Google Scholar 

  287. Almas T, Malik J, Alsubai AK, Jawad Zaidi SM, Iqbal R, Khan K, et al. Post-acute COVID-19 syndrome and its prolonged effects: an updated systematic review. Ann Med Surg (Lond). 2022; https://doi.org/10.1016/j.amsu.2022.103995. 103995.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Badenoch JB, Rengasamy ER, Watson C, Jansen K, Chakraborty S, Sundaram RD, et al. Persistent neuropsychiatric symptoms after COVID-19: a systematic review and meta-analysis. Brain Commun. 2022;4(1):fcab297. https://doi.org/10.1093/braincomms/fcab297.

    Article  CAS  PubMed  Google Scholar 

  289. Daroische R, Hemminghyth MS, Eilertsen TH, Breitve MH, Chwiszczuk LJ. Cognitive impairment after COVID-19—a review on objective test data. Front Neurol. 2021;12:699582. https://doi.org/10.3389/fneur.2021.699582.

    Article  PubMed  PubMed Central  Google Scholar 

  290. Fan FC, Zhang SY, Cheng Y. Incidence of psychological illness after coronavirus outbreak: a meta-analysis study. J Epidemiol Community Health. 2021;75(9):836–42. https://doi.org/10.1136/jech-2020-215927.

    Article  PubMed  Google Scholar 

  291. Groff D, Sun A, Ssentongo AE, Ba DM, Parsons N, Poudel GR, et al. Short-term and long-term rates of postacute sequelae of SARS-coV‑2 infection: a systematic review. JAMA Netw Open. 2021;4(10):e2128568. https://doi.org/10.1001/jamanetworkopen.2021.28568.

    Article  PubMed  PubMed Central  Google Scholar 

  292. Han Q, Zheng B, Daines L, Sheikh A. Long-term sequelae of COVID-19: a systematic review and meta-analysis of one-year follow-up studies on post-COVID symptoms. Pathogens. 2022; https://doi.org/10.3390/pathogens11020269. 11(2).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Jennings G, Monaghan A, Xue F, Mockler D, Romero-Ortuño R. A systematic review of persistent symptoms and residual abnormal functioning following acute COVID-19: ongoing symptomatic phase vs. Post-COVID-19 syndrome. J Clin Med. 2021; https://doi.org/10.3390/jcm10245913. 10(24).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Michelen M, Manoharan L, Elkheir N, Cheng V, Dagens A, Hastie C, et al. Characterising long COVID: a living systematic review. BMJ Glob Health. 2021; https://doi.org/10.1136/bmjgh-2021-005427. 6(9).

    Article  PubMed  Google Scholar 

  295. Nagarajan R, Krishnamoorthy Y, Basavarachar V, Dakshinamoorthy R. Prevalence of post-traumatic stress disorder among survivors of severe COVID-19 infections: a systematic review and meta-analysis. J Affect Disord. 2022;299:52–9. https://doi.org/10.1016/j.jad.2021.11.040.

    Article  CAS  PubMed  Google Scholar 

  296. Nasserie T, Hittle M, Goodman SN. Assessment of the frequency and variety of persistent symptoms among patients with COVID-19: a systematic review. JAMA Netw Open. 2021;4(5):e2111417. https://doi.org/10.1001/jamanetworkopen.2021.11417.

    Article  PubMed  PubMed Central  Google Scholar 

  297. Premraj L, Kannapadi NV, Briggs J, Seal SM, Battaglini D, Fanning J, et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J Neurol Sci. 2022;434:120162. https://doi.org/10.1016/j.jns.2022.120162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Tavares-Júnior JWL, de Souza ACC, Borges JWP, Oliveira DN, Siqueira-Neto JI, Sobreira-Neto MA, et al. COVID-19 associated cognitive impairment: a systematic review. Cortex. 2022;152:77–97. https://doi.org/10.1016/j.cortex.2022.04.006.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Rittmannsberger.

Ethics declarations

Interessenkonflikt

H. Rittmannsberger, M. Barth, B. Lamprecht, P. Malik und K. Yazdi-Zorn geben an, dass kein Interessenkonflikt besteht.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rittmannsberger, H., Barth, M., Lamprecht, B. et al. Interaktion von körperlichen Veränderungen und psychischen Störungen bei COVID-19. Ein Scoping Review. Neuropsychiatr 38, 1–23 (2024). https://doi.org/10.1007/s40211-023-00487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40211-023-00487-8

Schlüsselwörter

Keywords