Zusammenfassung
Eine Infektion mit SARS-CoV‑2 kann zu einer Beteiligung des Nervensystems mit neurologischer oder psychiatrischer Symptomatik führen. Entzündungsvorgängen scheint dabei eine wesentlich größere Bedeutung zuzukommen als dem Virus selbst. Der Beitrag versucht aus der vorliegenden Literatur biologische Veränderungen im Kontext einer SARS-CoV‑2 Infektion zu identifizieren, die mit psychiatrischen Symptomen einhergehen können und beschäftigt sich schwerpunktmäßig mit Delir, kognitiven Störungen, Depression, Angst, postraumatischer Belastungsstörung und Psychosen. Neuroinflammation mit Schädigung der kapillaren Endothelzellen des Gehirns und Aktivierung von Mikroglia und Astrozyten und damit Freisetzung von Zytokinen spielen dabei in allen Bereichen eine zentrale Rolle und können zu Schädigungen der grauen und der weißen Substanz und zu Störungen des Hirnmetabolismus und der Konnektivität führen. Derartige neuroimmunologische Vorgänge sind als biologisches Korrelat bei vielen psychischen Erkrankungen, wie affektiven Störungen, Psychosen und dementiellen Erkrankungen, beschrieben. Die Aktivierung der Gliazellen kann lange über die auslösende Noxe hinaus andauern und damit auch zu Spätfolgen der Infektion beitragen.
Summary
An infection with SARS-CoV‑2 can affect the central nervous system, leading to neurological as well as psychiatric symptoms. In this respect, mechanisms of inflammation seem to be of much greater importance than the virus itself. This paper deals with the possible contributions of organic changes to psychiatric symptomatology and deals especially with delirium, cognitive symptoms, depression, anxiety, posttraumatic stress disorder and psychosis. Processes of neuroinflammation with infection of capillary endothelial cells and activation of microglia and astrocytes releasing high amounts of cytokines seem to be of key importance in all kinds of disturbances. They can lead to damage in grey and white matter, impairment of cerebral metabolism and loss of connectivity. Such neuroimmunological processes have been described as a organic basis for many psychiatric disorders, as affective disorders, psychoses and dementia. As the activation of the glia cells can persist for a long time after the offending agent has been cleared, this can contribute to long term sequalae of the infection.
Literatur
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with Coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683–90. https://doi.org/10.1001/jamaneurol.2020.1127.
Raony Í, de Figueiredo CS, Pandolfo P, Giestal-de-Araujo E, Oliveira-Silva Bomfim P, Savino W. Psycho-neuroendocrine-immune interactions in COVID-19: potential impacts on mental health. Front Immunol. 2020;11:1170. https://doi.org/10.3389/fimmu.2020.01170.
Sommer IE, Bakker PR. What can psychiatrists learn from SARS and MERS outbreaks? Lancet Psychiatry. 2020;7(7):565–6. https://doi.org/10.1016/s2215-0366(20)30219-4.
Rogers JP, Chesney E, Oliver D, Pollak TA, McGuire P, Fusar-Poli P, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020;7(7):611–27. https://doi.org/10.1016/s2215-0366(20)30203-0.
Favas TT, Dev P, Chaurasia RN, Chakravarty K, Mishra R, Joshi D, et al. Neurological manifestations of COVID-19: a systematic review and meta-analysis of proportions. Neurol Sci. 2020;41(12):3437–70. https://doi.org/10.1007/s10072-020-04801-y.
Frontera JA, Sabadia S, Lalchan R, Fang T, Flusty B, Millar-Vernetti P, et al. A prospective study of neurologic disorders in hospitalized patients with COVID-19 in New York city. Neurology. 2021;96(4):e575–e86. https://doi.org/10.1212/wnl.0000000000010979.
Javed A. Neurological associations of SARS-coV‑2 infection: a systematic review. CNS Neurol Disord Drug Targets. 2022;21(3):246–58. https://doi.org/10.2174/1871527320666210216121211.
Chen X, Laurent S, Onur OA, Kleineberg NN, Fink GR, Schweitzer F, et al. A systematic review of neurological symptoms and complications of COVID-19. J Neurol. 2021;268(2):392–402. https://doi.org/10.1007/s00415-020-10067-3.
Misra S, Kolappa K, Prasad M, Radhakrishnan D, Thakur KT, Solomon T, et al. Frequency of neurologic manifestations in COVID-19: a systematic review and meta-analysis. Neurology. 2021;97(23):e2269–e81. https://doi.org/10.1212/wnl.0000000000012930.
Rittmannsberger H, Barth M, Malik P, Yazdi K. Neuropsychiatric aspects of COVID-19—A narrative overview. Fortschr Neurol Psychiatr. 2022;90(3):108–20. https://doi.org/10.1055/a-1523-3850.
Rabady S, Altenberger J, Brose M, Denk-Linnert DM, Fertl E, Götzinger F, et al. Guideline S1: long COVID: diagnostics and treatment strategies. Wien Klin Wochenschr. 2021;133(Suppl 7):237–78. https://doi.org/10.1007/s00508-021-01974-0.
Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–15. https://doi.org/10.1038/s41591-021-01283-z.
Ettman CK, Cohen GH, Abdalla SM, Sampson L, Trinquart L, Castrucci BC, et al. Persistent depressive symptoms during COVID-19: a national, population-representative, longitudinal study of U.S. adults. Lancet Reg Health Am. 2022;5:100091. https://doi.org/10.1016/j.lana.2021.100091.
Benfante A, Tesio V, Di Tella M, Romeo A, Castelli L. From the first to the second wave of COVID-19: anxiety, de-pressive, and post-traumatic stress symptoms in the Italian population. Int J Environ Res Public Health. 2022; https://doi.org/10.3390/ijerph19031239. 19(3).
Robinson E, Sutin AR, Daly M, Jones A. A systematic review and meta-analysis of longitudinal cohort studies comparing mental health before versus during the COVID-19 pandemic in. J Affect Disord. 2020;2022(296):567–76. https://doi.org/10.1016/j.jad.2021.09.098.
Rittmannsberger H, Barth M, Malik P, Malsiner-Walli G, Yazdi K. First episode psychotic disorders in the wake of the COVID-19 pandemic. A descriptive review of casereports. Acta Neuropsychiatr. 2022; https://doi.org/10.1017/neu.2022.11. 1–47.
Kumar M, Thakur AK. Neurological manifestations and comorbidity associated with COVID-19: an overview. Neurol Sci. 2020;41(12):3409–18. https://doi.org/10.1007/s10072-020-04823-6.
Roy D, Ghosh R, Dubey S, Dubey MJ, Benito-León J, Kanti Ray B. Neurological and neuropsychiatric impacts of COVID-19 pandemic. Can J Neurol Sci. 2020; https://doi.org/10.1017/cjn.2020.173. 1–16.
Steardo L Jr., Steardo L, Verkhratsky A. Psychiatric face of COVID-19. Transl Psychiatry. 2020;10(1):261. https://doi.org/10.1038/s41398-020-00949-5.
de Sousa Moreira JL, Barbosa SMB, Vieira JG, Chaves NCB, Felix EBG, Feitosa PWG, et al. The psychiatric and neuropsychiatric repercussions associated with severe infections of COVID-19 and other coronaviruses. Prog Neuropsychopharmacol Biol Psychiatry. 2021; https://doi.org/10.1016/j.pnpbp.2020.110159. 106.
Ritchie K, Chan D. The emergence of cognitive COVID. World Psychiatry. 2021;20(1):52–3.
Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B, et al. Non-neuronal expression of SARS-CoV‑2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020; https://doi.org/10.1126/sciadv.abc5801. 6(31).
Bulfamante G, Chiumello D, Canevini MP, Priori A, Mazzanti M, Centanni S, et al. First ultrastructural autoptic findings of SARS-Cov‑2 in olfactory pathways and brainstem. Minerva Anestesiol. 2020;86(6):678–9. https://doi.org/10.23736/s0375-9393.20.14772-2.
Najt P, Richards HL, Fortune DG. Brain imaging in patients with COVID-19: a systematic review. Brain Behav Immun Health. 2021;16:100290. https://doi.org/10.1016/j.bbih.2021.100290.
Douaud G, Lee S, Alfaro-Almagro F, Arthofer C, Wang C, McCarthy P, et al. SARS-CoV‑2 is associated with changes in brain structure in UK biobank. Nature. 2022; https://doi.org/10.1038/s41586-022-04569-5.
Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, et al. Neuropilin‑1 facilitates SARS-CoV‑2 cell entry and infectivity. Science. 2020;370(6518):856–60. https://doi.org/10.1126/science.abd2985.
Gadanec LK, McSweeney KR, Qaradakhi T, Ali B, Zulli A, Apostolopoulos V. Can SARS-coV‑2 virus use multiple receptors to enter host cells? Int J Mol Sci. 2021; https://doi.org/10.3390/ijms22030992. 22(3).
Maiese A, Manetti AC, Bosetti C, Del Duca F, La Russa R, Frati P, et al. SARS-coV‑2 and the brain: a review of the current knowledge on neuropathology in COVID-19. Brain Pathol. 2021; https://doi.org/10.1111/bpa.13013. e13013.
Davies J, Randeva HS, Chatha K, Hall M, Spandidos DA, Karteris E, et al. Neuropilin‑1 as a new potential SARS-coV‑2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Mol Med Rep. 2020;22(5):4221–6. https://doi.org/10.3892/mmr.2020.11510.
Bodnar B, Patel K, Ho W, Luo JJ, Hu W. Cellular mechanisms underlying neurological/neuropsychiatric manifestations of COVID-19. J Med Virol. 2020; https://doi.org/10.1002/jmv.26720.
Orsini A, Corsi M, Santangelo A, Riva A, Peroni D, Foiadelli T, et al. Challenges and management of neurological and psychiatric manifestations in SARS-coV‑2 (COVID-19) patients. Neurol Sci. 2020;41(9):2353–66. https://doi.org/10.1007/s10072-020-04544-w.
de Erausquin GA, Snyder H, Carrillo M, Hosseini AA, Brugha TS, Seshadri S. The chronic neuropsychiatric sequelae of COVID-19: the need for a prospective study of viral impact on brain functioning. Alzheimers Dement. 2021; https://doi.org/10.1002/alz.12255.
Travi G, Rossotti R, Merli M, D’Amico F, Chiappetta S, Giussani G, et al. Neurological manifestations in patients hospitalized with COVID-19: a retrospective analysis from a large cohort in northern Italy. Eur J Neurosci. 2021;53(8):2912–22. https://doi.org/10.1111/ejn.15159.
Jonigk D, Märkl B, Helms J. COVID-19: what the clinician should know about post-mortem findings. Intensive Care Med. 2021;47(1):86–9. https://doi.org/10.1007/s00134-020-06302-0.
Gonçalves de Andrade E, Šimončičová E, Carrier M, Vecchiarelli HA, Robert M, Tremblay M. Microglia fighting for neurological and mental health: on the central nervous system frontline of COVID-19 pandemic. Front Cell Neurosci. 2021;15:647378. https://doi.org/10.3389/fncel.2021.647378.
Schweitzer F, Goereci Y, Franke C, Silling S, Bösl F, Maier F, et al. Cerebrospinal fluid analysis post-COVID-19 is not suggestive of persistent central nervous system infection. Ann Neurol. 2022;91(1):150–7. https://doi.org/10.1002/ana.26262.
Fotuhi M, Mian A, Meysami S, Raji CA. Neurobiology of COVID-19. J Alzheimers Dis. 2020;76(1):3–19. https://doi.org/10.3233/jad-200581.
Espíndola OM, Siqueira M, Soares CN, Lima M, Leite A, Araujo AQC, et al. Patients with COVID-19 and neurological manifestations show undetectable SARS-CoV‑2 RNA levels in the cerebrospinal fluid. Int J Infect Dis. 2020;96:567–9. https://doi.org/10.1016/j.ijid.2020.05.123.
Cosentino G, Todisco M, Hota N, Della Porta G, Morbini P, Tassorelli C, et al. Neuropathological findings from COVID-19 patients with neurological symptoms argue against a direct brain invasion of SARS-coV-2: a critical systematic review. Eur J Neurol. 2021;28(11):3856–65. https://doi.org/10.1111/ene.15045.
Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19(11):919–29. https://doi.org/10.1016/s1474-4422(20)30308-2.
Martin M, Paes VR, Cardoso EF, Neto C, Kanamura CT, Leite CDC, et al. Postmortem brain 7T MRI with minimally invasive pathological correlation in deceased COVID-19 subjects. Insights Imaging. 2022;13(1):7. https://doi.org/10.1186/s13244-021-01144-w.
McQuaid C, Brady M, Deane R. SARS-CoV-2: is there neuroinvasion? Fluids Barriers CNS. 2021;18(1):32. https://doi.org/10.1186/s12987-021-00267-y.
Solomon T. Neurological infection with SARS-coV-2—the story so far. Nat Rev Neurol. 2021;17(2):65–6. https://doi.org/10.1038/s41582-020-00453-w.
Doyle MF. Central nervous system outcomes of COVID-19. Transl Res. 2021; https://doi.org/10.1016/j.trsl.2021.09.002.
Lewis A, Frontera J, Placantonakis DG, Lighter J, Galetta S, Balcer L, et al. Cerebrospinal fluid in COVID-19: a systematic review of the literature. J Neurol Sci. 2021;421:117316. https://doi.org/10.1016/j.jns.2021.117316.
Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016;13(1):3–10. https://doi.org/10.1038/cmi.2015.74.
Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull. 2014;140(3):774–815. https://doi.org/10.1037/a0035302.
Mingoti MED, Bertollo AG, Simões JLB, Francisco GR, Bagatini MD, Ignácio ZM. COVID-19, oxidative stress, and neuroinflammation in the depression route. J Mol Neurosci. 2022; https://doi.org/10.1007/s12031-022-02004-y.
Barnes J, Mondelli V, Pariante CM. Genetic contributions of inflammation to depression. Neuropsychopharmacology. 2017;42(1):81–98. https://doi.org/10.1038/npp.2016.169.
Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, et al. Profiling serum cytokines in COVID-19 patients reveals IL‑6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9(1):1123–30. https://doi.org/10.1080/22221751.2020.1770129.
Melo AKG, Milby KM, Caparroz A, Pinto A, Santos RRP, Rocha AP, et al. Biomarkers of cytokine storm as red flags for severe and fatal COVID-19 cases: a living systematic review and meta-analysis. PLoS ONE. 2021;16(6):e253894. https://doi.org/10.1371/journal.pone.0253894.
Tang Y, Sun J, Pan H, Yao F, Yuan Y, Zeng M, et al. Aberrant cytokine expression in COVID-19 patients: associations between cytokines and disease severity. Cytokine. 2021;143:155523. https://doi.org/10.1016/j.cyto.2021.155523.
Zeng HL, Lu QB, Yang Q, Wang X, Yue DY, Zhang LK, et al. Longitudinal profile of laboratory parameters and their application in the prediction for fatal outcome among patients infected with SARS-coV-2: a retrospective cohort study. Clin Infect Dis. 2021;72(4):626–33. https://doi.org/10.1093/cid/ciaa574.
Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56. https://doi.org/10.1038/nrn2297.
Tremblay ME, Madore C, Bordeleau M, Tian L, Verkhratsky A. Neuropathobiology of COVID-19: the role for glia. Front Cell Neurosci. 2020;14:592214. https://doi.org/10.3389/fncel.2020.592214.
Xanthos DN, Sandkühler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci. 2014;15(1):43–53. https://doi.org/10.1038/nrn3617.
Blaylock RL. Immunology primer for neurosurgeons and neurologists part 2: Innate brain immunity. Surg Neurol Int. 2013;4:118. https://doi.org/10.4103/2152-7806.118349.
Tay TL, Béchade C, D’Andrea I, St-Pierre M‑K, Henry MS, Roumier A, et al. Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan. Front Mol Neurosci. 2018;10:421. https://doi.org/10.3389/fnmol.2017.00421.
Domingues R, Lippi A, Setz C, Outeiro TF, Krisko A. SARS-CoV‑2, immunosenescence and inflammaging: partners in the COVID-19 crime. Aging (Albany NY). 2020;12(18):18778–89. https://doi.org/10.18632/aging.103989.
Asslih S, Damri O, Agam G. Neuroinflammation as a common denominator of complex diseases (cancer, diabetes type 2, and neuropsychiatric disorders). Int J Mol Sci. 2021; https://doi.org/10.3390/ijms22116138. 22(11).
Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation. 2021;18(1):258. https://doi.org/10.1186/s12974-021-02309-6.
Leonard BE. Inflammation and depression: a causal or coincidental link to the pathophysiology? Acta Neuropsychiatr. 2018;30(1):1–16. https://doi.org/10.1017/neu.2016.69.
Andrews MG, Mukhtar T, Eze UC, Simoneau CR, Perez Y, Mostajo-Radji MA, et al. Tropism of SARS-coV‑2 for developing human cortical astrocytes. bioRxiv. 2021; https://doi.org/10.1101/2021.01.17.427024.
Besedovsky HO, del Rey A. Central and peripheral cytokines mediate immune-brain connectivity. Neurochem Res. 2011;36(1):1–6. https://doi.org/10.1007/s11064-010-0252-x.
Perlmutter A. Immunological interfaces: the COVID-19 pandemic and depression. Front Neurol. 2021;12:657004. https://doi.org/10.3389/fneur.2021.657004.
Mohammadi S, Moosaie F, Aarabi MH. Understanding the immunologic characteristics of neurologic manifestations of SARS-coV‑2 and potential immunological mechanisms. Mol Neurobiol. 2020;57(12):5263–75. https://doi.org/10.1007/s12035-020-02094-y.
Tavčar P, Potokar M, Kolenc M, Korva M, Avšič-Županc T, Zorec R, et al. Neurotropic viruses, astrocytes, and COVID-19. Front Cell Neurosci. 2021;15:662578. https://doi.org/10.3389/fncel.2021.662578.
Sriwastava S, Tandon M, Podury S, Prasad A, Wen S, Guthrie G, et al. COVID-19 and neuroinflammation: a literature review of relevant neuroimaging and CSF markers in central nervous system inflammatory disorders from SARS-COV2. J Neurol. 2021;268(12):4448–78. https://doi.org/10.1007/s00415-021-10611-9.
Tremblay ME, Madore C, Tian L, Verkhratsky A. Editorial: role of neuroinflammation in the neuropsychiatric and neurological aspects of COVID-19. Front Cell Neurosci. 2022;16:840121. https://doi.org/10.3389/fncel.2022.840121.
Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV‑2 infection. Eur J Intern Med. 2020;76:14–20. https://doi.org/10.1016/j.ejim.2020.04.037.
Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. Embo Mol Med. 2010;2(7):247–57. https://doi.org/10.1002/emmm.201000080.
Zakrocka I, Targowska-Duda KM, Wnorowski A, Kocki T, Jóźwiak K, Turski WA. Angiotensin II type 1 receptor blockers inhibit KAT II activity in the brain-its possible clinical applications. Neurotox Res. 2017;32(4):639–48. https://doi.org/10.1007/s12640-017-9781-2.
Sfera A, Osorio C, Jafri N, Diaz EL, Campo Maldonado JE. Intoxication with endogenous angiotensin II: a COVID-19 hypothesis. Front Immunol. 2020;11:1472. https://doi.org/10.3389/fimmu.2020.01472.
Bouças AP, Rheinheimer J, Lagopoulos J. Why severe COVID-19 patients are at greater risk of developing depression: a molecular perspective. Neuroscientist. 2022;28(1):11–9. https://doi.org/10.1177/1073858420967892.
Lyra e Silva NM, Barros-Aragão FGQ, De Felice FG, Ferreira ST. Inflammation at the crossroads of COVID-19, cognitive deficits and depression. Neuropharmacology. 2022;209:109023. https://doi.org/10.1016/j.neuropharm.2022.109023.
Pyne JD, Brickman AM. The impact of the COVID-19 pandemic on dementia risk: potential pathways to cognitive decline. Neurodegener Dis. 2021;21(1–2):1–23. https://doi.org/10.1159/000518581.
Theoharides TC. Could SARS-coV‑2 spike protein be responsible for long-COVID syndrome? Mol Neurobiol. 2022;59(3):1850–61. https://doi.org/10.1007/s12035-021-02696-0.
Kreye J, Reincke SM, Prüss H. Do cross-reactive antibodies cause neuropathology in COVID-19? Nat Rev Immunol. 2020;20(11):645–6. https://doi.org/10.1038/s41577-020-00458-y.
Yapici-Eser H, Koroglu YE, Oztop-Cakmak O, Keskin O, Gursoy A, Gursoy-Ozdemir Y. Neuropsychiatric symptoms of COVID-19 explained by SARS-coV‑2 proteins’ mimicry of human protein interactions. Front Hum Neurosci. 2021;15:656313. https://doi.org/10.3389/fnhum.2021.656313.
Butler M, Cross B, Hafeez D, Lim MF, Morrin H, Rengasamy ER, et al. Emerging knowledge of the neurobiology of COVID-19. Psychiatr Clin North Am. 2022;45(1):29–43. https://doi.org/10.1016/j.psc.2021.11.001.
Shao SC, Lai CC, Chen YH, Chen YC, Hung MJ, Liao SC. Prevalence, incidence and mortality of delirium in patients with COVID-19: a systematic review and meta-analysis. Age Ageing. 2021;50(5):1445–53. https://doi.org/10.1093/ageing/afab103.
Ragheb J, McKinney A, Zierau M, Brooks J, Hill-Caruthers M, Iskander M, et al. Delirium and neuropsychological outcomes in critically Ill patients with COVID-19: a cohort study. BMJ Open. 2021;11(9):e50045. https://doi.org/10.1136/bmjopen-2021-050045.
Hawkins M, Sockalingam S, Bonato S, Rajaratnam T, Ravindran M, Gosse P, et al. A rapid review of the pathoetiology, presentation, and management of delirium in adults with COVID-19. J Psychosom Res. 2021;141:110350. https://doi.org/10.1016/j.jpsychores.2020.110350.
Pun BT, Badenes R, Heras La Calle G, Orun OM, Chen W, Raman R, et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. Lancet Respir Med. 2021;9(3):239–50. https://doi.org/10.1016/s2213-2600(20)30552-x.
Hariyanto TI, Putri C, Hananto JE, Arisa J, Fransisca VSR, Kurniawan A. Delirium is a good predictor for poor outcomes from coronavirus disease 2019 (COVID-19) pneumonia: a systematic review, meta-analysis, and meta-regression. J Psychiatr Res. 2021;142:361–8. https://doi.org/10.1016/j.jpsychires.2021.08.031.
Pranata R, Huang I, Lim MA, Yonas E, Vania R, Kuswardhani RAT. Delirium and mortality in Coronavirus disease 2019 (COVID-19)—a systematic review and meta-analysis. Arch Gerontol Geriatr. 2021;95:104388. https://doi.org/10.1016/j.archger.2021.104388.
Stracciari A, Bottini G, Guarino M, Magni E, Pantoni L. Cognitive and behavioral manifestations in SARS-coV‑2 infection: not specific or distinctive features? Neurol Sci. 2021;42(6):2273–81. https://doi.org/10.1007/s10072-021-05231-0.
Udzik J, Jakubowski P, Niekrasz M, Barczyszyn A, Parczewski M. COVID-19-associated encephalopathy-case series and clinical considerations. J Clin Med. 2022; https://doi.org/10.3390/jcm11040981.
Uginet M, Breville G, Assal F, Lövblad KO, Vargas MI, Pugin J, et al. COVID-19 encephalopathy: clinical and neurobiological features. J Med Virol. 2021;93(7):4374–81. https://doi.org/10.1002/jmv.26973.
Kotfis K, Williams Roberson S, Wilson J, Pun B, Ely EW, Jeżowska I, et al. COVID-19: what do we need to know about ICU delirium during the SARS-coV‑2 pandemic? Anaesthesiol Intensive Ther. 2020;52(2):132–8. https://doi.org/10.5114/ait.2020.95164.
Manca R, De Marco M, Venneri A. The impact of COVID-19 infection and enforced prolonged social isolation on neuropsychiatric symptoms in older adults with and without dementia: a review. Front Psychiatry. 2020;11:585540. https://doi.org/10.3389/fpsyt.2020.585540.
Alkeridy WA, Almaghlouth I, Alrashed R, Alayed K, Binkhamis K, Alsharidi A et al. A Unique Presentation of Delirium in a Patient with Otherwise Asymptomatic COVID-19. Journal of the American Geriatrics Society. 2020;68(7):1382–4. https://doi.org/10.1111/jgs.16536.
Beach SR, Praschan NC, Hogan C, Dotson S, Merideth F, Kontos N, et al. Delirium in COVID-19: a case series and exploration of potential mechanisms for central nervous system involvement. Gen Hosp Psychiatry. 2020;65:47–53. https://doi.org/10.1016/j.genhosppsych.2020.05.008.
Butt I, Sawlani V, Geberhiwot T. Prolonged confusional state as first manifestation of COVID-19. Ann Clin Transl Neurol. 2020;7(8):1450–2. https://doi.org/10.1002/acn3.51067.
Kennedy M, Helfand BKI, Gou RY, Gartaganis SL, Webb M, Moccia JM, et al. Delirium in older patients with COVID-19 presenting to the emergency department. JAMA Netw Open. 2020;3(11):e2029540. https://doi.org/10.1001/jamanetworkopen.2020.29540.
Poloni TE, Carlos AF, Cairati M, Cutaia C, Medici V, Marelli E, et al. Prevalence and prognostic value of delirium as the initial presentation of COVID-19 in the elderly with dementia: an Italian retrospective study. EClinicalMedicine. 2020;26:100490. https://doi.org/10.1016/j.eclinm.2020.100490.
Fabrazzo M, Russo A, Luciano M, Camerlengo A, Catapano P, Amoroso B, et al. Delirium and psychiatric sequelae associated to SARS-coV‑2 in asymptomatic patients with psychiatric history and mild cognitive impairment as risk factors: three case reports. Front Psychiatry. 2022;13:868286. https://doi.org/10.3389/fpsyt.2022.868286.
Zazzara MB, Penfold RS, Roberts AL, Lee KA, Dooley H, Sudre CH, et al. Probable delirium is a presenting symptom of COVID-19 in frail, older adults: a cohort study of 322 hospitalised and 535 community-based older adults. Age Ageing. 2021;50(1):40–8. https://doi.org/10.1093/ageing/afaa223.
Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, et al. Neurologic features in severe SARS-CoV‑2 infection. N Engl J Med. 2020;382(23):2268–70. https://doi.org/10.1056/NEJMc2008597.
Ramage AE. Potential for cognitive communication impairment in COVID-19 survivors: a call to action for speech-language pathologists. Am J Speech Lang Pathol. 2020;29(4):1821–32. https://doi.org/10.1044/2020_ajslp-20-00147.
Rhally A, Griffa A, Kremer S, Uginet M, Breville G, Stancu P, et al. C‑reactive protein and white matter microstructural changes in COVID-19 patients with encephalopathy. J Neural Transm (Vienna). 2021;128(12):1899–906. https://doi.org/10.1007/s00702-021-02429-6.
Shah P, Patel J, Soror NN, Kartan R. Encephalopathy in COVID-19 patients. Cureus. 2021;13(7):e16620. https://doi.org/10.7759/cureus.16620.
Klein R, Soung A, Sissoko C, Nordvig A, Canoll P, Mariani M, et al. COVID-19 induces neuroinflammation and loss of hippocampal neurogenesis. Res Sq. 2021; https://doi.org/10.21203/rs.3.rs-1031824/v1.
Lee MH, Perl DP, Nair G, Li W, Maric D, Murray H, et al. Microvascular injury in the brains of patients with Covid-19. N Engl J Med. 2021;384(5):481–3. https://doi.org/10.1056/NEJMc2033369.
Mukerji SS, Solomon IH. What can we learn from brain autopsies in COVID-19? Neurosci Lett. 2021;742:135528. https://doi.org/10.1016/j.neulet.2020.135528.
Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, et al. Neuroinvasion of SARS-CoV‑2 in human and mouse brain. J Exp Med. 2021; https://doi.org/10.1084/jem.20202135. 218(3).
Solomon IH, Normandin E, Bhattacharyya S, Mukerji SS, Keller K, Ali AS, et al. Neuropathological features of Covid-19. N Engl J Med. 2020;383(10):989–92. https://doi.org/10.1056/NEJMc2019373.
Poloni TE, Medici V, Moretti M, Visonà SD, Cirrincione A, Carlos AF, et al. COVID-19-related neuropathology and microglial activation in elderly with and without dementia. Brain Pathol. 2021;31(5):e12997. https://doi.org/10.1111/bpa.12997.
Yang AC, Kern F, Losada PM, Agam MR, Maat CA, Schmartz GP, et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature. 2021;595(7868):565–71. https://doi.org/10.1038/s41586-021-03710-0.
Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J. 2020;41(32):3038–44. https://doi.org/10.1093/eurheartj/ehaa623.
Sfera A, Osorio C, Rahman L, Zapata-Martín Del Campo CM, Maldonado JC, Jafri N, et al. PTSD as an endothelial disease: insights from COVID-19. Front Cell Neurosci. 2021;15:770387. https://doi.org/10.3389/fncel.2021.770387.
Jarrott B, Head R, Pringle KG, Lumbers ER, Martin JH. “LONG COVID”—a hypothesis for understanding the biological basis and pharmacological treatment strategy. Pharmacol Res Perspect. 2022;10(1):e911. https://doi.org/10.1002/prp2.911.
Krasemann S, Haferkamp U, Pfefferle S, Woo MS, Heinrich F, Schweizer M, et al. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV‑2. Stem Cell Reports. 2022;17(2):307–20. https://doi.org/10.1016/j.stemcr.2021.12.011.
Lowenstein CJ, Solomon SD. Severe COVID-19 is a microvascular disease. Circulation. 2020;142(17):1609–11. https://doi.org/10.1161/circulationaha.120.050354.
Whitmore HAB, Kim LA. Understanding the role of blood vessels in the neurologic manifestations of Coronavirus disease 2019 (COVID-19). Am J Pathol. 2021;191(11):1946–54. https://doi.org/10.1016/j.ajpath.2021.04.017.
Østergaard L. SARS coV‑2 related microvascular damage and symptoms during and after COVID-19: consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep. 2021;9(3):e14726. https://doi.org/10.14814/phy2.14726.
Steardo L, Steardo L Jr., Zorec R, Verkhratsky A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol (Oxf). 2020;229(3):e13473. https://doi.org/10.1111/apha.13473.
Dąbrowska E, Galińska-Skok B, Waszkiewicz N. Depressive and neurocognitive disorders in the context of the inflammatory background of COVID-19. Life (Basel). 2021; https://doi.org/10.3390/life11101056. 11(10).
von Meijenfeldt FA, Havervall S, Adelmeijer J, Thalin C, Lisman T. Persistent endotheliopathy in the pathogenesis of long COVID syndrome: comment from von Meijenfeldt et al. J Thromb Haemost. 2022;20(1):267–9. https://doi.org/10.1111/jth.15580.
Fogarty H, Townsend L, Morrin H, Ahmad A, Comerford C, Karampini E, et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost. 2021;19(10):2546–53. https://doi.org/10.1111/jth.15490.
Alemanno F, Houdayer E, Parma A, Spina A, Del Forno A, Scatolini A, et al. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: A COVID-rehabilitation unit experience. PLoS ONE. 2021;16(2):e246590. https://doi.org/10.1371/journal.pone.0246590.
Hosp JA, Dressing A, Blazhenets G, Bormann T, Rau A, Schwabenland M, et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain. 2021;144(4):1263–76. https://doi.org/10.1093/brain/awab009.
Beaud V, Crottaz-Herbette S, Dunet V, Vaucher J, Bernard-Valnet R, Du Pasquier R, et al. Pattern of cognitive deficits in severe COVID-19. J Neurol Neurosurg Psychiatry. 2021;92(5):567–8. https://doi.org/10.1136/jnnp-2020-325173.
Crivelli L, Palmer K, Calandri I, Guekht A, Beghi E, Carroll W, et al. Changes in cognitive functioning after COVID-19: a systematic review and meta-analysis. Alzheimers Dement. 2022; https://doi.org/10.1002/alz.12644.
Vialatte de Pémille C, Ray A, Michel A, Stefano F, Yim T, Bruel C, et al. Prevalence and prospective evaluation of cognitive dysfunctions after SARS due to SARS-coV‑2 virus. The COgnitiVID study. Rev Neurol (Paris). 2022; https://doi.org/10.1016/j.neurol.2022.03.014.
Lamprecht B. Is there a post-COVID syndrome? Pneumol (Berl). 2020; https://doi.org/10.1007/s10405-020-00347-0. 1–4.
Mikkelsen ME, Christie JD, Lanken PN, Biester RC, Thompson BT, Bellamy SL, et al. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med. 2012;185(12):1307–15. https://doi.org/10.1164/rccm.201111-2025OC.
Salluh JI, Wang H, Schneider EB, Nagaraja N, Yenokyan G, Damluji A, et al. Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ. 2015;350:h2538. https://doi.org/10.1136/bmj.h2538.
Graham EL, Clark JR, Orban ZS, Lim PH, Szymanski AL, Taylor C, et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 “long haulers”. Ann Clin Transl Neurol. 2021;8(5):1073–85. https://doi.org/10.1002/acn3.51350.
Mazza MG, Palladini M, De Lorenzo R, Magnaghi C, Poletti S, Furlan R, et al. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun. 2021;94:138–47. https://doi.org/10.1016/j.bbi.2021.02.021.
Poletti S, Palladini M, Mazza MG, De Lorenzo R, Furlan R, Ciceri F, et al. Long-term consequences of COVID-19 on cognitive functioning up to 6 months after discharge: role of depression and impact on quality of life. Eur Arch Psychiatry Clin Neurosci. 2021; https://doi.org/10.1007/s00406-021-01346-9. 1–10.
Kas A, Soret M, Pyatigoskaya N, Habert MO, Hesters A, Le Guennec L, et al. The cerebral network of COVID-19-related encephalopathy: a longitudinal voxel-based 18F-FDG-PET study. Eur J Nucl Med Mol Imaging. 2021;48(8):2543–57. https://doi.org/10.1007/s00259-020-05178-y.
Ferrucci R, Dini M, Rosci C, Capozza A, Groppo E, Reitano MR, et al. One-year cognitive follow-up of COVID-19 hospitalized patients. Eur J Neurol. 2022;29(7):2006–14. https://doi.org/10.1111/ene.15324.
Miskowiak KW, Fugledalen L, Jespersen AE, Sattler SM, Podlekareva D, Rungby J, et al. Trajectory of cognitive impairments over 1 year after COVID-19 hospitalisation: pattern, severity, and functional implications. Eur Neuropsychopharmacol. 2022;59:82–92. https://doi.org/10.1016/j.euroneuro.2022.04.004.
PHOSP-COVID Collaboration Group.. Clinical characteristics with inflammation profiling of long COVID and association with 1‑year recovery following hospitalisation in the UK: a prospective observational study. Lancet Respir Med. 2022; https://doi.org/10.1016/s2213-2600(22)00127-8.
Seeßle J, Waterboer T, Hippchen T, Simon J, Kirchner M, Lim A, et al. Persistent symptoms in adult patients 1 year after Coronavirus disease 2019 (COVID-19): a prospective cohort study. Clin Infect Dis. 2022;74(7):1191–8. https://doi.org/10.1093/cid/ciab611.
Hampshire A, Trender W, Chamberlain SR, Jolly AE, Grant JE, Patrick F, et al. Cognitive deficits in people who have recovered from COVID-19. EClinicalMedicine. 2021;39:101044. https://doi.org/10.1016/j.eclinm.2021.101044.
Fernández-Castañeda A, Lu P, Geraghty AC, Song E, Lee MH, Wood J et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell. 2022;185(14):2452–68.e16. https://doi.org/10.1016/j.cell.2022.06.008.
Serrano-Castro PJ, Garzón-Maldonado FJ, Casado-Naranjo I, Ollero-Ortiz A, Mínguez-Castellanos A, Iglesias-Espinosa M, et al. The cognitive and psychiatric subacute impairment in severe Covid-19. Sci Rep. 2022;12(1):3563. https://doi.org/10.1038/s41598-022-07559-9.
Ferrando SJ, Dornbush R, Lynch S, Shahar S, Klepacz L, Karmen CL, et al. Neuropsychological, medical, and psychiatric findings after recovery from acute COVID-19: a cross-sectional study. J Acad Consult Liaison Psychiatry. 2022; https://doi.org/10.1016/j.jaclp.2022.01.003.
Zhou H, Lu S, Chen J, Wei N, Wang D, Lyu H, et al. The landscape of cognitive function in recovered COVID-19 patients. J Psychiatr Res. 2020;129:98–102. https://doi.org/10.1016/j.jpsychires.2020.06.022.
Ceban F, Ling S, Lui LMW, Lee Y, Gill H, Teopiz KM, et al. Fatigue and cognitive impairment in post-COVID-19 syndrome: a systematic review and meta-analysis. Brain Behav Immun. 2021;101:93–135. https://doi.org/10.1016/j.bbi.2021.12.020.
Apple AC, Oddi A, Peluso MJ, Asken BM, Henrich TJ, Kelly JD, et al. Risk factors and abnormal cerebrospinal fluid associate with cognitive symptoms after mild COVID-19. Ann Clin Transl Neurol. 2022;9(2):221–6. https://doi.org/10.1002/acn3.51498.
Farooqi M, Khan A, Jacobs A, D’Souza V, Consiglio F, Karmen CL, et al. Examining the long-term sequelae of SARS-coV 2 infection in patients seen in an outpatient psychiatric department. Neuropsychiatr Dis Treat. 2022;18:1259–68. https://doi.org/10.2147/ndt.S357262.
Fernández-de-Las-Peñas C, Martín-Guerrero JD, Cancela-Cilleruelo I, Rodríguez-Jiménez J, Moro-López-Menchero P, Pellicer-Valero OJ. Exploring trajectory recovery curves of post-COVID cognitive symptoms in previously hospitalized COVID-19 survivors: the LONG-COVID-EXP-CM multicenter study. J Neurol. 2022; https://doi.org/10.1007/s00415-022-11176-x. 1–5.
Guedj E, Campion JY, Dudouet P, Kaphan E, Bregeon F, Tissot-Dupont H, et al. (18)F-FDG brain PET hypometabolism in patients with long COVID. Eur J Nucl Med Mol Imaging. 2021;48(9):2823–33. https://doi.org/10.1007/s00259-021-05215-4.
Guedj E, Million M, Dudouet P, Tissot-Dupont H, Bregeon F, Cammilleri S, et al. (18)F-FDG brain PET hypometabolism in post-SARS-CoV‑2 infection: substrate for persistent/delayed disorders? Eur J Nucl Med Mol Imaging. 2021;48(2):592–5. https://doi.org/10.1007/s00259-020-04973-x.
Hugon J, Msika EF, Queneau M, Farid K, Paquet C. Long COVID: cognitive complaints (brain fog) and dysfunction of the cingulate cortex. J Neurol. 2022;269(1):44–6. https://doi.org/10.1007/s00415-021-10655-x.
Hugon J, Queneau M, Sanchez Ortiz M, Msika EF, Farid K, Paquet C. Cognitive decline and brainstem hypometabolism in long COVID: a case series. Brain Behav. 2022;12(4):e2513. https://doi.org/10.1002/brb3.2513.
Verger A, Kas A, Dudouet P, Goehringer F, Salmon-Ceron D, Guedj E. Visual interpretation of brain hypometabolism related to neurological long COVID: a French multicentric experience. Eur J Nucl Med Mol Imaging. 2022;49(9):3197–202. https://doi.org/10.1007/s00259-022-05753-5.
Di Stadio A, Brenner MJ, De Luca P, Albanese M, D’Ascanio L, Ralli M, et al. Olfactory dysfunction, headache, and mental clouding in adults with long-COVID-19: what is the link between cognition and olfaction? A cross-sectional study. Brain Sci. 2022; https://doi.org/10.3390/brainsci12020154. 12(2).
García-Grimshaw M, Chirino-Pérez A, Flores-Silva FD, Valdés-Ferrer SI, Vargas-Martínez M, Jiménez-Ávila AI, et al. Critical role of acute hypoxemia on the cognitive impairment after severe COVID-19 pneumonia: a multivariate causality model analysis. Neurol Sci. 2022;43(4):2217–29. https://doi.org/10.1007/s10072-021-05798-8.
Dondaine T, Ruthmann F, Vuotto F, Carton L, Gelé P, Faure K, et al. Long-term cognitive impairments following COVID-19: a possible impact of hypoxia. J Neurol. 2022; https://doi.org/10.1007/s00415-022-11077-z. 1–8.
Radnis C, Qiu S, Jhaveri M, Da Silva I, Szewka A, Koffman L. Radiographic and clinical neurologic manifestations of COVID-19 related hypoxemia. J Neurol Sci. 2020;418:117119. https://doi.org/10.1016/j.jns.2020.117119.
Manera MR, Fiabane E, Pain D, Aiello EN, Radici A, Ottonello M, et al. Clinical features and cognitive sequelae in COVID-19: a retrospective study on N=152 patients. Neurol Sci. 2022;43(1):45–50. https://doi.org/10.1007/s10072-021-05744-8.
Taskiran-Sag A, Eroglu E, Ozulken K, Canlar S, Poyraz BM, Sekerlisoy MB, et al. Headache and cognitive disturbance correlate with ganglion cell layer thickness in patients who recovered from COVID-19. Clin Neurol Neurosurg. 2022;217:107263. https://doi.org/10.1016/j.clineuro.2022.107263.
Ortelli P, Ferrazzoli D, Sebastianelli L, Maestri R, Dezi S, Spampinato D, et al. Altered motor cortex physiology and dysexecutive syndrome in patients with fatigue and cognitive difficulties after mild COVID-19. Eur J Neurol. 2022;29(6):1652–62. https://doi.org/10.1111/ene.15278.
Mavrikaki M, Lee JD, Solomon IH, Slack FJ. Severe COVID-19 induces molecular signatures of aging in the human brain. medRxiv. 2021; https://doi.org/10.1101/2021.11.24.21266779.
Fernández RS, Crivelli L, Guimet NM, Allegri RF, Pedreira ME. Psychological distress associated with COVID-19 quarantine: latent profile analysis, outcome prediction and mediation analysis. J Affect Disord. 2020;277:75–84. https://doi.org/10.1016/j.jad.2020.07.133.
Joly F, Castel H, Tron L, Lange M, Vardy J. Potential effect of immunotherapy agents on cognitive function in cancer patients. J Natl Cancer Inst. 2020;112(2):123–7. https://doi.org/10.1093/jnci/djz168.
Sheth VS, Gauthier J. Taming the beast: CRS and ICANS after CAR T‑cell therapy for ALL. Bone Marrow Transplant. 2021;56(3):552–66. https://doi.org/10.1038/s41409-020-01134-4.
Lv L, Mao S, Dong H, Hu P, Dong R. Pathogenesis, assessments, and management of chemotherapy-related cognitive impairment (CRCI): an updated literature review. J Oncol. 2020;2020:3942439. https://doi.org/10.1155/2020/3942439.
Gibson EM, Monje M. Microglia in cancer therapy-related cognitive impairment. Trends Neurosci. 2021;44(6):441–51. https://doi.org/10.1016/j.tins.2021.02.003.
Delgado-Alonso C, Valles-Salgado M, Delgado-Álvarez A, Yus M, Gómez-Ruiz N, Jorquera M, et al. Cognitive dysfunction associated with COVID-19: a comprehensive neuropsychological study. J Psychiatr Res. 2022;150:40–6. https://doi.org/10.1016/j.jpsychires.2022.03.033.
Renaud-Charest O, Lui LMW, Eskander S, Ceban F, Ho R, Di Vincenzo JD, et al. Onset and frequency of depression in post-COVID-19 syndrome: a systematic review. J Psychiatr Res. 2021;144:129–37. https://doi.org/10.1016/j.jpsychires.2021.09.054.
Brown LA, Ballentine E, Zhu Y, McGinley EL, Pezzin L, Abramoff B. The unique contribution of depression to cognitive impairment in post-acute sequelae of SARS-coV‑2 infection. Brain Behav Immun Health. 2022;22:100460. https://doi.org/10.1016/j.bbih.2022.100460.
Liyanage-Don NA, Winawer MR, Hamberger MJ, Agarwal S, Trainor AR, Quispe KA, et al. Association of depression and COVID-induced PTSD with cognitive symptoms after COVID-19 illness. Gen Hosp Psychiatry. 2022;76:45–8. https://doi.org/10.1016/j.genhosppsych.2022.02.006.
Sia AL, Neo JE, Jen-Wei Tan B, Tan EK. “Brain fog” and COVID-19. Am J Med Sci. 2023;365(5):472–4. https://doi.org/10.1016/j.amjms.2023.01.003.
Finsterer J, Mehri S. Post-COVID ‘brain fog’ will clear up only through neuropsychological examination. Neurol Neurochir Pol. 2023; https://doi.org/10.5603/PJNNS.a2023.0032.
Krishnan K, Miller AK, Reiter K, Bonner-Jackson A. Neurocognitive profiles in patients with persisting cognitive symptoms associated with COVID-19. Arch Clin Neuropsychol. 2022;37(4):729–37. https://doi.org/10.1093/arclin/acac004.
Kyzar EJ, Purpura LJ, Shah J, Cantos A, Nordvig AS, Yin MT. Anxiety, depression, insomnia, and trauma-related symptoms following COVID-19 infection at long-term follow-up. Brain Behav Immun Health. 2021;16:100315. https://doi.org/10.1016/j.bbih.2021.100315.
Tu Y, Zhang Y, Li Y, Zhao Q, Bi Y, Lu X, et al. Post-traumatic stress symptoms in COVID-19 survivors: a self-report and brain imaging follow-up study. Mol Psychiatry. 2021;26(12):7475–80. https://doi.org/10.1038/s41380-021-01223-w.
Huang L, Yao Q, Gu X, Wang Q, Ren L, Wang Y, et al. 1‑year outcomes in hospital survivors with COVID-19: a longitudinal cohort study. Lancet. 2021;398(10302):747–58. https://doi.org/10.1016/s0140-6736(21)01755-4.
Huang L, Li X, Gu X, Zhang H, Ren L, Guo L, et al. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. Lancet Respir Med. 2022; https://doi.org/10.1016/s2213-2600(22)00126-6.
Deng J, Zhou F, Hou W, Silver Z, Wong CY, Chang O, et al. The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: a meta-analysis. Ann N Y Acad Sci. 2021;1486(1):90–111. https://doi.org/10.1111/nyas.14506.
Guo Q, Zheng Y, Shi J, Wang J, Li G, Li C, et al. Immediate psychological distress in quarantined patients with COVID-19 and its association with peripheral inflammation: a mixed-method study. Brain Behav Immun. 2020;88:17–27. https://doi.org/10.1016/j.bbi.2020.05.038.
Lamontagne SJ, Winters MF, Pizzagalli DA, Olmstead MC. Post-acute sequelae of COVID-19: evidence of mood & cognitive impairment. Brain Behav Immun Health. 2021;17:100347. https://doi.org/10.1016/j.bbih.2021.100347.
Khubchandani J, Price JH, Sharma S, Wiblishauser MJ, Webb FJ. COVID-19 infection survivors and the risk of depression and anxiety symptoms: a nationwide study of adults in the United States. Eur J Intern Med. 2022;97:119–21. https://doi.org/10.1016/j.ejim.2022.01.021.
Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6‑month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8(5):416–27. https://doi.org/10.1016/s2215-0366(21)00084-5.
Jacob L, Koyanagi A, Smith L, Bohlken J, Haro JM, Kostev K. No significant association between COVID-19 diagnosis and the incidence of depression and anxiety disorder? A retrospective cohort study conducted in Germany. J Psychiatr Res. 2022;147:79–84. https://doi.org/10.1016/j.jpsychires.2022.01.013.
Dong F, Liu HL, Dai N, Yang M, Liu JP. A living systematic review of the psychological problems in people suffering from COVID-19. J Affect Disord. 2021;292:172–88. https://doi.org/10.1016/j.jad.2021.05.060.
Perlis RH, Ognyanova K, Santillana M, Baum MA, Lazer D, Druckman J et al. Association of Acute Symptoms of COVID-19 and Symptoms of Depression in Adults. JAMA network open. 2021;4(3):e213223‑e. https://doi.org/10.1001/jamanetworkopen.2021.3223.
Evans RA, McAuley H, Harrison EM, Shikotra A, Singapuri A, Sereno M, et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study. Lancet Respir Med. 2021;9(11):1275–87. https://doi.org/10.1016/s2213-2600(21)00383-0.
Bourmistrova NW, Solomon T, Braude P, Strawbridge R, Carter B. Long-term effects of COVID-19 on mental health: a systematic review. J Affect Disord. 2022;299:118–25. https://doi.org/10.1016/j.jad.2021.11.031.
Serrano García A, Montánchez Mateo J, Franch Pato CM, Gómez Martínez R, García Vázquez P, González Rodríguez I. Interleukin 6 and depression in patients affected by Covid-19. Med Clin (Engl Ed). 2021;156(7):332–5. https://doi.org/10.1016/j.medcle.2020.11.013.
Kahve AC, Kaya H, Okuyucu M, Goka E, Barun S, Hacimusalar Y. Do anxiety and depression levels affect the inflammation response in patients hospitalized for COVID-19. Psychiatry Investig. 2021;18(6):505–12. https://doi.org/10.30773/pi.2021.0029.
Mazza MG, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, et al. Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behav Immun. 2020;89:594–600. https://doi.org/10.1016/j.bbi.2020.07.037.
Clemente I, Sinatti G, Cirella A, Santini SJ, Balsano C. Alteration of inflammatory parameters and psychological post-traumatic syndrome in long-COVID patients. Int J Environ Res Public Health. 2022; https://doi.org/10.3390/ijerph19127103. 19(12).
Fernández-de-Las-Peñas C, Martín-Guerrero JD, Cancela-Cilleruelo I, Moro-López-Menchero P, Rodríguez-Jiménez J, Pellicer-Valero OJ. Trajectory curves of post-COVID anxiety/depressive symptoms and sleep quality in previously hospitalized COVID-19 survivors: the LONG-COVID-EXP-CM multicenter study. Psychol Med. 2022; https://doi.org/10.1017/s003329172200006x. 1–2.
Iglesias-González M, Boigues M, Sanagustin D, Giralt-López M, Cuevas-Esteban J, Martínez-Cáceres E, et al. Association of serum interleukin‑6 and C‑reactive protein with depressive and adjustment disorders in COVID-19 inpatients. Brain Behav Immun Health. 2022;19:100405. https://doi.org/10.1016/j.bbih.2021.100405.
Benedetti F, Palladini M, Paolini M, Melloni E, Vai B, De Lorenzo R, et al. Brain correlates of depression, post-traumatic distress, and inflammatory biomarkers in COVID-19 survivors: a multimodal magnetic resonance imaging study. Brain Behav Immun Health. 2021;18:100387. https://doi.org/10.1016/j.bbih.2021.100387.
Hanson BA, Visvabharathy L, Ali ST, Kang AK, Patel TR, Clark JR, et al. Plasma biomarkers of neuropathogenesis in hospitalized patients with COVID-19 and those with postacute sequelae of SARS-coV‑2 infection. Neurol Neuroimmunol Neuroinflamm. 2022; https://doi.org/10.1212/nxi.0000000000001151. 9(3).
Speth MM, Singer-Cornelius T, Oberle M, Gengler I, Brockmeier SJ, Sedaghat AR. Mood, anxiety and olfactory dysfunction in COVID-19: evidence of central nervous system involvement? Laryngoscope. 2020;130(11):2520–5. https://doi.org/10.1002/lary.28964.
Kiecolt-Glaser JK, Derry HM, Fagundes CP. Inflammation: depression fans the flames and feasts on the heat. Am J Psychiatry. 2015;172(11):1075–91. https://doi.org/10.1176/appi.ajp.2015.15020152.
Hodes GE, Kana V, Menard C, Merad M, Russo SJ. Neuroimmune mechanisms of depression. Nat Neurosci. 2015;18(10):1386–93. https://doi.org/10.1038/nn.4113.
Mousten IV, Sørensen NV, Christensen RHB, Benros ME. Cerebrospinal fluid biomarkers in patients with unipolar depression compared with healthy control individuals: a systematic review and meta-analysis. JAMA Psychiatry. 2022;79(6):571–81. https://doi.org/10.1001/jamapsychiatry.2022.0645.
Himmerich H, Patsalos O, Lichtblau N, Ibrahim MAA, Dalton B. Cytokine research in depression: principles, challenges, and open questions. Front Psychiatry. 2019;10:30. https://doi.org/10.3389/fpsyt.2019.00030.
Köhler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand. 2017;135(5):373–87. https://doi.org/10.1111/acps.12698.
Liu Y, Ho RC, Mak A. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin‑2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord. 2012;139(3):230–9. https://doi.org/10.1016/j.jad.2011.08.003.
Vian J, Pereira C, Chavarria V, Köhler C, Stubbs B, Quevedo J, et al. The renin-angiotensin system: a possible new target for depression. BMC Med. 2017;15(1):144. https://doi.org/10.1186/s12916-017-0916-3.
Haapakoski R, Ebmeier KP, Alenius H, Kivimäki M. Innate and adaptive immunity in the development of depression: an update on current knowledge and technological advances. Prog Neuropsychopharmacol Biol Psychiatry. 2016;66:63–72. https://doi.org/10.1016/j.pnpbp.2015.11.012.
Zhang N, Yao L, Wang P, Liu Z. Immunoregulation and antidepressant effect of ketamine. Transl Neurosci. 2021;12(1):218–36. https://doi.org/10.1515/tnsci-2020-0167.
Lyons D, Frampton M, Naqvi S, Donohoe D, Adams G, Glynn K. Fallout from the COVID-19 pandemic—should we prepare for a tsunami of post viral depression? Ir J Psychol Med. 2020;37(4):295–300. https://doi.org/10.1017/ipm.2020.40.
Alpert O, Begun L, Garren P, Solhkhah R. Cytokine storm induced new onset depression in patients with COVID-19. A new look into the association between depression and cytokines—two case reports. Brain Behav Immun Health. 2020;9:100173. https://doi.org/10.1016/j.bbih.2020.100173.
Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16(1):22–34. https://doi.org/10.1038/nri.2015.5.
Lorkiewicz P, Waszkiewicz N. Biomarkers of post-COVID depression. JCM. 2021;10(18):4142. https://doi.org/10.3390/jcm10184142.
Ramiro S, Mostard RLM, Magro-Checa C, van Dongen CMP, Dormans T, Buijs J, et al. Historically controlled comparison of glucocorticoids with or without tocilizumab versus supportive care only in patients with COVID-19-associated cytokine storm syndrome: results of the CHIC study. Ann Rheum Dis. 2020;79(9):1143–51. https://doi.org/10.1136/annrheumdis-2020-218479.
Benedetti F, Mazza M, Cavalli G, Ciceri F, Dagna L, Rovere-Querini P. Can cytokine blocking prevent depression in COVID-19 survivors? J Neuroimmune Pharmacol. 2021;16(1):1–3. https://doi.org/10.1007/s11481-020-09966-z.
Janssen MT, Ramiro S, Mostard RL, Magro-Checa C, Landewé RB. Three-month and six-month outcomes of patients with COVID-19 associated hyperinflammation treated with short-term immunosuppressive therapy: follow-up of the CHIC study. RMD Open. 2021; https://doi.org/10.1136/rmdopen-2021-001906. 7(3).
Tang SW, Leonard BE, Helmeste DM. Long COVID, neuropsychiatric disorders, psychotropics, present and future. Acta Neuropsychiatr. 2022;34(3):109–26. https://doi.org/10.1017/neu.2022.6.
Jellinger KA. Pathomechanisms of vascular depression in older adults. Int J Mol Sci. 2021; https://doi.org/10.3390/ijms23010308.
Xu Z, Wang J, Lyu H, Wang R, Hu Y, Guo Z, et al. Alterations of white matter microstructure in subcortical vascular mild cognitive impairment with and without depressive symptoms. J Alzheimers Dis. 2020;73(4):1565–73. https://doi.org/10.3233/jad-190890.
Brunet A, Rivest-Beauregard M, Lonergan M, Cipolletta S, Rasmussen A, Meng X, et al. PTSD is not the emblematic disorder of the COVID-19 pandemic; adjustment disorder is. Bmc Psychiatry. 2022;22(1):300. https://doi.org/10.1186/s12888-022-03903-5.
Suthaharan P, Reed E, Leptourgos P, Kenney J, Uddenberg S, Mathys C, et al. Paranoia and belief updating during a crisis. Res Sq. 2021; https://doi.org/10.21203/rs.3.rs-145987/v1.
Łoś K, Kulikowska J, Waszkiewicz N. The impact of the COVID-19 virus pandemic on the incidence of first psychotic spectrum disorders. Int J Environ Res Public Health. 2022; https://doi.org/10.3390/ijerph19073781. 19(7).
Mourani SC, Khoury R, Ghossoub E. Mechanisms of new-onset psychosis during the COVID-19 pandemic: what ignited the fire? Ann Clin Psychiatry. 2022;34(2):123–35. https://doi.org/10.12788/acp.0065.
Smith CM, Gilbert EB, Riordan PA, Helmke N, von Isenburg M, Kincaid BR, et al. COVID-19-associated psychosis: a systematic review of case reports. Gen Hosp Psychiatry. 2021;73:84–100. https://doi.org/10.1016/j.genhosppsych.2021.10.003.
Podury S, Srivastava S, Khan E, Kakara M, Tandon M, Shrestha AK, et al. Relevance of CSF, serum and neuroimaging markers in CNS and PNS manifestation in COVID-19: a systematic review of case report and case series. Brain Sci. 2021; https://doi.org/10.3390/brainsci11101354. 11(10).
Elkhaled W, Abid BF, Akhtar N, Abukamar MR, Ibrahim WH. A 23-year-old man with SARS-coV‑2 infection who presented with auditory hallucinations and imaging findings of cytotoxic lesions of the corpus callosum (CLOCC). Am J Case Rep. 2020;21:e928798. https://doi.org/10.12659/ajcr.928798.
Sen M, Yesilkaya UH, Balcioglu YH. SARS-CoV-2-associated first episode of acute mania with psychotic features. J Clin Neurosci. 2021;87:29–31. https://doi.org/10.1016/j.jocn.2021.02.012.
Ariza-Varón M, Beltrán MA, Marín-Medina DS, González AF, Ávila AM. Psychosis associated with suspected SARS-CoV‑2 encephalitis with response to steroids: a case report. Infect Dis (Lond). 2021; https://doi.org/10.1080/23744235.2021.1977381. 1–5.
Bernard-Valnet R, Pizzarotti B, Anichini A, Demars Y, Russo E, Schmidhauser M et al. Two patients with acute meningoencephalitis concomitant with SARS-CoV‑2 infection. European Journal of Neurology. 2020;27(9):e43–e4. https://doi.org/10.1111/ene.14298.
McAlpine LS, Lifland B, Check JR, Angarita GA, Ngo TT, Pleasure SJ, et al. Remission of subacute psychosis in a COVID-19 patient with an antineuronal autoantibody after treatment with intravenous immunoglobulin. Biol Psychiatry. 2021;90(4):e23–e6. https://doi.org/10.1016/j.biopsych.2021.03.033.
Panariello A, Bassetti R, Radice A, Rossotti R, Puoti M, Corradin M, et al. Anti-NMDA receptor encephalitis in a psychiatric Covid-19 patient: a case report. Brain Behav Immun. 2020;87:179–81. https://doi.org/10.1016/j.bbi.2020.05.054.
Caan MP, Lim CT, Howard M. A case of catatonia in a man with COVID-19. Psychosomatics. 2020;61(5):556–60. https://doi.org/10.1016/j.psym.2020.05.021.
Majadas S, Pérez J, Casado-Espada NM, Zambrana A, Bullón A, Roncero C. Case with psychotic disorder as a clinical presentation of COVID-19. Psychiatry Clin Neurosci. 2020;74(10):551–2. https://doi.org/10.1111/pcn.13107.
Jozuka R, Kimura H, Uematsu T, Fujigaki H, Yamamoto Y, Kobayashi M, et al. Severe and long-lasting neuropsychiatric symptoms after mild respiratory symptoms caused by COVID-19: a case report. Neuropsychopharmacol Rep. 2021; https://doi.org/10.1002/npr2.12222.
Panariello F, Cellini L, Speciani M, De Ronchi D, Atti AR. How does SARS-CoV‑2 affect the central nervous system? A working hypothesis. Front Psychiatry. 2020; https://doi.org/10.3389/fpsyt.2020.582345. 11.
Alvarez-Cisneros T, Lara-Reyes A, Sansón-Tinoco S. Hiccups and psychosis: two atypical presentations of COVID-19. Int J Emerg Med. 2021;14(1):8. https://doi.org/10.1186/s12245-021-00333-0.
Ferrando SJ, Klepacz L, Lynch S, Tavakkoli M, Dornbush R, Baharani R, et al. COVID-19 psychosis: a potential new neuropsychiatric condition triggered by novel Coronavirus infection and the inflammatory response? Psychosomatics. 2020;61(5):551–5. https://doi.org/10.1016/j.psym.2020.05.012.
Mollà Roig P. Brief reactive psychosis to quarantine due to a positive PCR for SARS-CoV-2: Presentation of a clinical case. Psiquiatri’a. Biologica. 2021;28(1):22–4. https://doi.org/10.1016/j.psiq.2020.10.003.
Chacko M, Job A, Caston F 3rd, George P, Yacoub A, Cáceda R. COVID-19-induced psychosis and suicidal behavior: case report. Sn Compr Clin Med. 2020; https://doi.org/10.1007/s42399-020-00530-7. 1–5.
Lorenzo-Villalba N, Jannot X, Syrovatkova A, Michel V, Andrès E. SARS-CoV‑2 infection and psychiatric manifestations in a previous healthy patient. Caspian J Intern Med. 2020;11(Suppl 1):566–8. https://doi.org/10.22088/cjim.11.0.566.
Smith CM, Komisar JR, Mourad A, Kincaid BR. COVID-19-associated brief psychotic disorder. BMJ Case Rep. 2020; https://doi.org/10.1136/bcr-2020-236940. 13(8).
Brown E, Gray R, Lo Monaco S, O’Donoghue B, Nelson B, Thompson A, et al. The potential impact of COVID-19 on psychosis: a rapid review of contemporary epidemic and pandemic research. Schizophr Res. 2020;222:79–87. https://doi.org/10.1016/j.schres.2020.05.005.
Watson CJ, Thomas RH, Solomon T, Michael BD, Nicholson TR, Pollak TA. COVID-19 and psychosis risk: real or delusional concern? Neurosci Lett. 2021; https://doi.org/10.1016/j.neulet.2020.135491. 741.
Taquet M, Sillett R, Zhu L, Mendel J, Camplisson I, Dercon Q, et al. Neurological and psychiatric risk trajectories after SARS-CoV‑2 infection: an analysis of 2‑year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry. 2022;9(10):815–27. https://doi.org/10.1016/s2215-0366(22)00260-7.
Menninger KA. Psychoses associated with influenca: i. general data: statistical analysis. JAMA. 1919;72(4):235–41. https://doi.org/10.1001/jama.1919.02610040001001.
Nielsen PR, Benros ME, Mortensen PB. Hospital contacts with infection and risk of schizophrenia: a population-based cohort study with linkage of Danish national registers. Schizophr Bull. 2014;40(6):1526–32. https://doi.org/10.1093/schbul/sbt200.
Benros ME, Mortensen PB. Role of infection, autoimmunity, atopic disorders, and the immune system in schizophrenia: evidence from epidemiological and genetic studies. Curr Top Behav Neurosci. 2020;44:141–59. https://doi.org/10.1007/7854_2019_93.
Torrey EF, Peterson MR. The viral hypothesis of schizophrenia. Schizophr Bull. 1976;2(1):136–46. https://doi.org/10.1093/schbul/2.1.136.
Yolken RH, Torrey EF. Are some cases of psychosis caused by microbial agents? A review of the evidence. Mol Psychiatry. 2008;13(5):470–9. https://doi.org/10.1038/mp.2008.5.
Misiak B, Bartoli F, Carrà G, Stańczykiewicz B, Gładka A, Frydecka D, et al. Immune-inflammatory markers and psychosis risk: a systematic review and meta-analysis. Psychoneuroendocrinology. 2021;127:105200. https://doi.org/10.1016/j.psyneuen.2021.105200.
De Picker LJ, Morrens M, Chance SA, Boche D. Microglia and brain plasticity in acute psychosis and schizophrenia illness course: a meta-review. Front Psychiatry. 2017;8:238. https://doi.org/10.3389/fpsyt.2017.00238.
Müller N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr Bull. 2018;44(5):973–82. https://doi.org/10.1093/schbul/sby024.
Kempuraj D, Selvakumar GP, Ahmed ME, Raikwar SP, Thangavel R, Khan A, et al. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist. 2020;26(5–6):402–14. https://doi.org/10.1177/1073858420941476.
Orsolini L, Sarchione F, Vellante F, Fornaro M, Matarazzo I, Martinotti G, et al. Protein‑C reactive as biomarker predictor of schizophrenia phases of illness? A systematic review. Curr Neuropharmacol. 2018;16(5):583–606. https://doi.org/10.2174/1570159x16666180119144538.
Marques TR, Ashok AH, Pillinger T, Veronese M, Turkheimer FE, Dazzan P, et al. Neuroinflammation in schizophrenia: meta-analysis of in vivo microglial imaging studies. Psychol Med. 2019;49(13):2186–96. https://doi.org/10.1017/s0033291718003057.
Weltgesundheitsorganisation. International Klassifikation psychischer Störungen. ICD-10 Kapitel V (F). Klinisch-diagnostische Leitlinien. Bern: Huber; 2005.
Joyce EM. Organic psychosis: the pathobiology and treatment of delusions. CNS Neurosci Ther. 2018;24(7):598–603. https://doi.org/10.1111/cns.12973.
Castanares-Zapatero D, Chalon P, Kohn L, Dauvrin M, Detollenaere J, Maertens de Noordhout C, et al. Pathophysiology and mechanism of long COVID: a comprehensive review. Ann Med. 2022;54(1):1473–87. https://doi.org/10.1080/07853890.2022.2076901.
Cattaneo A, Ferrari C, Uher R, Bocchio-Chiavetto L, Riva MA, Pariante CM. Absolute measurements of macrophage migration inhibitory factor and Interleukin-1‑β mRNA levels accurately predict treatment response in depressed patients. Int J Neuropsychopharmacol. 2016; https://doi.org/10.1093/ijnp/pyw045. 19(10).
Liu J, Li S, Liu J, Liang B, Wang X, Wang H, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV‑2 infected patients. EBioMedicine. 2020;55:102763. https://doi.org/10.1016/j.ebiom.2020.102763.
Piéroni L, Bastard JP, Piton A, Khalil L, Hainque B, Jardel C. Interpretation of circulating C‑reactive protein levels in adults: body mass index and gender are a must. Diabetes Metab. 2003;29(2 Pt 1):133–8. https://doi.org/10.1016/s1262-3636(07)70019-8.
Sneller MC, Liang CJ, Marques AR, Chung JY, Shanbhag SM, Fontana JR, et al. A longitudinal study of COVID-19 sequelae and immunity: baseline findings. Ann Intern Med. 2022; https://doi.org/10.7326/m21-4905.
Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacol (Berl). 2016;233(9):1637–50. https://doi.org/10.1007/s00213-016-4218-9.
Campos ACP, Antunes GF, Matsumoto M, Pagano RL, Martinez RCR. Neuroinflammation, pain and depression: an overview of the main findings. Front Psychol. 2020;11:1825. https://doi.org/10.3389/fpsyg.2020.01825.
Jansen van Vuren E, Steyn SF, Brink CB, Möller M, Viljoen FP, Harvey BH. The neuropsychiatric manifestations of COVID-19: interactions with psychiatric illness and pharmacological treatment. Biomed Pharmacother. 2021;135:111200. https://doi.org/10.1016/j.biopha.2020.111200.
Kappelmann N, Dantzer R, Khandaker GM. Interleukin‑6 as potential mediator of long-term neuropsychiatric symptoms of COVID-19. Psychoneuroendocrinology. 2021;131:105295. https://doi.org/10.1016/j.psyneuen.2021.105295.
Klein RS. Mechanisms of coronavirus infectious disease 2019-related neurologic diseases. Curr Opin Neurol. 2022;35(3):392–8. https://doi.org/10.1097/wco.0000000000001049.
Mohammadkhanizadeh A, Nikbakht F. Investigating the potential mechanisms of depression induced-by COVID-19 infection in patients. J Clin Neurosci. 2021;91:283–7. https://doi.org/10.1016/j.jocn.2021.07.023.
Stefano GB, Büttiker P, Weissenberger S, Ptacek R, Wang F, Esch T, et al. Biomedical perspectives of acute and chronic neurological and neuropsychiatric sequelae of COVID-19. Curr Neuropharmacol. 2022;20(6):1229–40. https://doi.org/10.2174/1570159x20666211223130228.
Tizenberg BN, Brenner LA, Lowry CA, Okusaga OO, Benavides DR, Hoisington AJ, et al. Biological and psychological factors determining neuropsychiatric outcomes in COVID-19. Curr Psychiatry Rep. 2021;23(10):68. https://doi.org/10.1007/s11920-021-01275-3.
Bechter K. The challenge of assessing mild neuroinflammation in severe mental disorders. Front Psychiatry. 2020;11:773. https://doi.org/10.3389/fpsyt.2020.00773.
Ritchie K, Chan D, Watermeyer T. The cognitive consequences of the COVID-19 epidemic: collateral damage? Brain Commun. 2020; https://doi.org/10.1093/braincomms/fcaa069. 2(2).
Zhou Y, Xu J, Hou Y, Leverenz JB, Kallianpur A, Mehra R, et al. Network medicine links SARS-coV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimers Res Ther. 2021;13(1):110. https://doi.org/10.1186/s13195-021-00850-3.
Sun B, Tang N, Peluso MJ, Iyer NS, Torres L, Donatelli JL, et al. Characterization and biomarker analyses of post-COVID-19 complications and neurological manifestations. Cells. 2021; https://doi.org/10.3390/cells10020386. 10(2).
Buonsenso D, Piazza M, Boner AL, Bellanti JA. Long COVID: a proposed hypothesis-driven model of viral persistence for the pathophysiology of the syndrome. Allergy Asthma Proc. 2022;43(3):187–93. https://doi.org/10.2500/aap.2022.43.220018.
Files JK, Sarkar S, Fram TR, Boppana S, Sterrett S, Qin K, et al. Duration of post-COVID-19 symptoms is associated with sustained SARS-coV-2-specific immune responses. JCI Insight. 2021; https://doi.org/10.1172/jci.insight.151544. 6(15).
Visvabharathy L, Hanson B, Orban Z, Lim PH, Palacio NM, Jain R, et al. Neuro-COVID long-haulers exhibit broad dysfunction in T cell memory generation and responses to vaccination. medRxiv. 2021; https://doi.org/10.1101/2021.08.08.21261763.
Proal AD, VanElzakker MB. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. Front Microbiol. 2021;12:698169. https://doi.org/10.3389/fmicb.2021.698169.
Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, et al. Evolution of antibody immunity to SARS-CoV‑2. Nature. 2021;591(7851):639–44. https://doi.org/10.1038/s41586-021-03207-w.
Gupta S, Parker J, Smits S, Underwood J, Dolwani S. Persistent viral shedding of SARS-CoV‑2 in faeces—a rapid review. Colorectal Dis. 2020;22(6):611–20. https://doi.org/10.1111/codi.15138.
Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, Bullock TA, McGary HM, Khan JA, et al. The SARS-CoV‑2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol Dis. 2020;146:105131. https://doi.org/10.1016/j.nbd.2020.105131.
Nuovo GJ, Magro C, Shaffer T, Awad H, Suster D, Mikhail S, et al. Endothelial cell damage is the central part of COVID-19 and a mouse model induced by injection of the S1 subunit of the spike protein. Ann Diagn Pathol. 2021;51:151682. https://doi.org/10.1016/j.anndiagpath.2020.151682.
Rhea EM, Logsdon AF, Hansen KM, Williams LM, Reed MJ, Baumann KK, et al. The S1 protein of SARS-CoV‑2 crosses the blood-brain barrier in mice. Nature Neuroscience. 2020. https://doi.org/10.1038/s41593-020-00771-8..
Oh J, Cho W‑H, Barcelon E, Kim KH, Hong J, Lee SJ. SARS-CoV‑2 spike protein induces cognitive deficit and anxiety-like behavior in mouse via non-cell autonomous hippocampal neuronal death. Sci Rep. 2022;12(1):5496. https://doi.org/10.1038/s41598-022-09410-7.
Paladino L, Vitale AM, Caruso Bavisotto C, de Conway Macario E, Cappello F, Macario AJL, et al. The role of molecular chaperones in virus infection and implications for understanding and treating COVID-19. J Clin Med. 2020; https://doi.org/10.3390/jcm9113518. 9(11).
Thye AY, Law JW, Tan LT, Pusparajah P, Ser HL, Thurairajasingam S, et al. Psychological symptoms in COVID-19 patients: insights into pathophysiology and risk factors of long COVID-19. Biology (Basel). 2022; https://doi.org/10.3390/biology11010061. 11(1).
Caspersen IH, Magnus P, Trogstad L. Excess risk and clusters of symptoms after COVID-19 in a large norwegian cohort. Eur J Epidemiol. 2022;37(5):539–48. https://doi.org/10.1007/s10654-022-00847-8.
Durstenfeld MS, Hsue PY, Peluso MJ, Deeks SG. Findings from mayo clinic’s post-COVID clinic: PASC phenotypes vary by sex and degree of IL‑6 elevation. Mayo Clin Proc. 2022;97(3):430–2. https://doi.org/10.1016/j.mayocp.2022.01.020.
Jennings G, Monaghan A, Xue F, Duggan E, Romero-Ortuño R. Comprehensive clinical characterisation of brain fog in adults reporting long COVID symptoms. J Clin Med. 2022; https://doi.org/10.3390/jcm11123440. 11(12).
Liu BM, Martins TB, Peterson LK, Hill HR. Clinical significance of measuring serum cytokine levels as inflammatory biomarkers in adult and pediatric COVID-19 cases: a review. Cytokine. 2021;142:155478. https://doi.org/10.1016/j.cyto.2021.155478.
Fontana IC, Souza DG, Pellerin L, Souza DO, Zimmer ER. About the source and consequences of (18)F-FDG brain PET hypometabolism in short and long COVID-19. Eur J Nucl Med Mol Imaging. 2021;48(9):2674–5. https://doi.org/10.1007/s00259-021-05342-y.
Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET radiotracers and targets for imaging of neuroinflammation in neurodegenerative diseases: outlook beyond TSPO. Mol Imaging. 2018;17:1536012118792317. https://doi.org/10.1177/1536012118792317.
Meyer JH, Cervenka S, Kim MJ, Kreisl WC, Henter ID, Innis RB. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry. 2020;7(12):1064–74. https://doi.org/10.1016/s2215-0366(20)30255-8.
Almas T, Malik J, Alsubai AK, Jawad Zaidi SM, Iqbal R, Khan K, et al. Post-acute COVID-19 syndrome and its prolonged effects: an updated systematic review. Ann Med Surg (Lond). 2022; https://doi.org/10.1016/j.amsu.2022.103995. 103995.
Badenoch JB, Rengasamy ER, Watson C, Jansen K, Chakraborty S, Sundaram RD, et al. Persistent neuropsychiatric symptoms after COVID-19: a systematic review and meta-analysis. Brain Commun. 2022;4(1):fcab297. https://doi.org/10.1093/braincomms/fcab297.
Daroische R, Hemminghyth MS, Eilertsen TH, Breitve MH, Chwiszczuk LJ. Cognitive impairment after COVID-19—a review on objective test data. Front Neurol. 2021;12:699582. https://doi.org/10.3389/fneur.2021.699582.
Fan FC, Zhang SY, Cheng Y. Incidence of psychological illness after coronavirus outbreak: a meta-analysis study. J Epidemiol Community Health. 2021;75(9):836–42. https://doi.org/10.1136/jech-2020-215927.
Groff D, Sun A, Ssentongo AE, Ba DM, Parsons N, Poudel GR, et al. Short-term and long-term rates of postacute sequelae of SARS-coV‑2 infection: a systematic review. JAMA Netw Open. 2021;4(10):e2128568. https://doi.org/10.1001/jamanetworkopen.2021.28568.
Han Q, Zheng B, Daines L, Sheikh A. Long-term sequelae of COVID-19: a systematic review and meta-analysis of one-year follow-up studies on post-COVID symptoms. Pathogens. 2022; https://doi.org/10.3390/pathogens11020269. 11(2).
Jennings G, Monaghan A, Xue F, Mockler D, Romero-Ortuño R. A systematic review of persistent symptoms and residual abnormal functioning following acute COVID-19: ongoing symptomatic phase vs. Post-COVID-19 syndrome. J Clin Med. 2021; https://doi.org/10.3390/jcm10245913. 10(24).
Michelen M, Manoharan L, Elkheir N, Cheng V, Dagens A, Hastie C, et al. Characterising long COVID: a living systematic review. BMJ Glob Health. 2021; https://doi.org/10.1136/bmjgh-2021-005427. 6(9).
Nagarajan R, Krishnamoorthy Y, Basavarachar V, Dakshinamoorthy R. Prevalence of post-traumatic stress disorder among survivors of severe COVID-19 infections: a systematic review and meta-analysis. J Affect Disord. 2022;299:52–9. https://doi.org/10.1016/j.jad.2021.11.040.
Nasserie T, Hittle M, Goodman SN. Assessment of the frequency and variety of persistent symptoms among patients with COVID-19: a systematic review. JAMA Netw Open. 2021;4(5):e2111417. https://doi.org/10.1001/jamanetworkopen.2021.11417.
Premraj L, Kannapadi NV, Briggs J, Seal SM, Battaglini D, Fanning J, et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J Neurol Sci. 2022;434:120162. https://doi.org/10.1016/j.jns.2022.120162.
Tavares-Júnior JWL, de Souza ACC, Borges JWP, Oliveira DN, Siqueira-Neto JI, Sobreira-Neto MA, et al. COVID-19 associated cognitive impairment: a systematic review. Cortex. 2022;152:77–97. https://doi.org/10.1016/j.cortex.2022.04.006.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Interessenkonflikt
H. Rittmannsberger, M. Barth, B. Lamprecht, P. Malik und K. Yazdi-Zorn geben an, dass kein Interessenkonflikt besteht.
Additional information
Hinweis des Verlags
Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.
Rights and permissions
About this article
Cite this article
Rittmannsberger, H., Barth, M., Lamprecht, B. et al. Interaktion von körperlichen Veränderungen und psychischen Störungen bei COVID-19. Ein Scoping Review. Neuropsychiatr 38, 1–23 (2024). https://doi.org/10.1007/s40211-023-00487-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40211-023-00487-8
Schlüsselwörter
- SARS-CoV‑2
- COVID-19
- Organische psychische Störungen
- Delir
- Kognitive Störungen
- Depression
- Angst
- PTBS
- Psychose