Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Lipoglycopeptide Antibacterial Agents in Gram-Positive Infections: A Comparative Review

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Oritavancin, telavancin, and dalbavancin are recently marketed lipoglycopeptides that exhibit remarkable differences to conventional molecules. While dalbavancin inhibits the late stages of peptidoglycan synthesis by mainly impairing transglycosylase activity, oritavancin and telavancin anchor in the bacterial membrane by the lipophilic side chain linked to their disaccharidic moiety, disrupting membrane integrity and causing bacteriolysis. Oritavancin keeps activity against vancomycin-resistant enterocococci, being a stronger inhibitor of transpeptidase than of transglycosylase activity. These molecules have potent activity against Gram-positive organisms, most notably staphylococci (including methicillin-resistant Staphylococcus aureus and to some extent vancomycin-intermediate Saureus), streptococci (including multidrug-resistant pneumococci), and Clostridia. All agents are indicated for the treatment of acute bacterial skin and skin structure infections, and telavancin, for hospital-acquired and ventilator-associated bacterial pneumonia. While telavancin is administered daily at 10 mg/kg, the remarkably long half-lives of oritavancin and dalbavancin allow for infrequent dosing (single dose of 1200 mg for oritavancin and 1000 mg at day 1 followed by 500 mg at day 8 for dalbavancin), which could be exploited in the future for outpatient therapy. Among possible safety issues evidenced during clinical development were an increased risk of developing osteomyelitis with oritavancin; taste disturbance, nephrotoxicity, and risk of corrected QT interval prolongation (especially in the presence of at-risk co-medications) with telavancin; and elevation of hepatic enzymes with dalbavancin. Interference with coagulation tests has been reported with oritavancin and telavancin. These drugs proved non-inferior to conventional treatments in clinical trials but their advantages may be better evidenced upon future evaluation in more severe infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cooper RD, Snyder NJ, Zweifel MJ, et al. Reductive alkylation of glycopeptide antibiotics: synthesis and antibacterial activity. J Antibiot (Tokyo). 1996;49(6):575–81.

    Article  CAS  Google Scholar 

  2. Allen NE. From vancomycin to oritavancin: the discovery and development of a novel lipoglycopeptide antibiotic. AntiInf Ag Med Chem. 2010;9:23–47.

    CAS  Google Scholar 

  3. Dunbar LM, Milata J, McClure T, et al. Comparison of the efficacy and safety of oritavancin front-loaded dosing regimens to daily dosing: an analysis of the SIMPLIFI trial. Antimicrob Agents Chemother. 2011;55(7):3476–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Darpo B, Lee SK, Moon TE, et al. Oritavancin, a new lipoglycopeptide antibiotic: results from a thorough QT study. J Clin Pharmacol. 2010;50(8):895–903.

    Article  CAS  PubMed  Google Scholar 

  5. Van Bambeke F. Glycopeptides in clinical development: pharmacological profile and clinical perspectives. Curr Opin Pharmacol. 2004;4(5):471–8.

    Article  PubMed  CAS  Google Scholar 

  6. The Medicines Company. Orbactiv™ full prescribing information. http://www.orbactiv.com. Accessed 29 Aug 2015.

  7. The Medicines Company. Orbactiv™ summary of product characteristics. http://www.Ema.Europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003785/WC500186343.pdf. Accessed 29 Aug 2015.

  8. Leadbetter MR, Adams SM, Bazzini B, et al. Hydrophobic vancomycin derivatives with improved ADME properties: discovery of telavancin (TD-6424). J Antibiot (Tokyo). 2004;57(5):326–36.

    Article  CAS  Google Scholar 

  9. Wenzler E, Rodvold KA. Telavancin: the long and winding road from discovery to Food and Drug Administration approvals and future directions. Clin Infect Dis. 2015;61(Suppl 2):S38–47.

    Article  PubMed  Google Scholar 

  10. Theravance BioPharma. Vibativ™ full prescribing information. http://www.vibativ.com. Accessed 29 Aug 2015.

  11. Clinigen Healthcare Ltd. Vibativ™ summary of product characteristics. http://www.ema.Europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001240/WC500115364.pdf. Accessed 29 Aug 2015.

  12. Malabarba A, Ciabatti R, Kettenring J, et al. Amides of de-acetylglucosaminyl-deoxy teicoplanin active against highly glycopeptide-resistant enterococci. Synthesis and antibacterial activity. J Antibiot (Tokyo). 1994;47(12):1493–506.

    Article  CAS  Google Scholar 

  13. Malabarba A, Ciabatti R, Scotti R, et al. New semisynthetic glycopeptides MDL 63,246 and MDL 63,042, and other amide derivatives of antibiotic A-40,926 active against highly glycopeptide-resistant VanA enterococci. J Antibiot (Tokyo). 1995;48(8):869–83.

    Article  CAS  Google Scholar 

  14. Durata Therapeutics. Dalvance™ full prescribing information. http://www.dalvance.com. Accessed 29 Aug 2015.

  15. Durata Therapeutics, Durata. Xydalba™ summary of product characteristics. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002840/WC500183869.pdf. Accessed 29 Aug 2015.

  16. Butler MS, Hansford KA, Blaskovich MAT, et al. Glycopeptide antibiotics: back to the future. J Antibiot (Tokyo). 2014;67(9):631–44.

    Article  CAS  Google Scholar 

  17. Barna JC, Williams DH. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol. 1984;38:339–57.

    Article  CAS  PubMed  Google Scholar 

  18. Reynolds PE. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis. 1989;8(11):943–50.

    Article  CAS  PubMed  Google Scholar 

  19. Lamp KC, Rybak MJ, Bailey EM, et al. In vitro pharmacodynamic effects of concentration, pH, and growth phase on serum bactericidal activities of daptomycin and vancomycin. Antimicrob Agents Chemother. 1992;36(12):2709–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hiramatsu K, Hanaki H, Ino T, et al. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother. 1997;40(1):135–6.

    Article  CAS  PubMed  Google Scholar 

  21. Gardete S, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest. 2014;124(7):2836–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis. 2006;42(Suppl 1):S25–34.

    Article  CAS  PubMed  Google Scholar 

  23. Gould IM. Treatment of bacteraemia: methicillin-resistant Staphylococcus aureus (MRSA) to vancomycin-resistant S. aureus (VRSA). Int J Antimicrob Agents. 2013;42(Suppl):S17–21.

    Article  CAS  PubMed  Google Scholar 

  24. Beauregard DA, Williams DH, Gwynn MN, et al. Dimerization and membrane anchors in extracellular targeting of vancomycin group antibiotics. Antimicrob Agents Chemother. 1995;39(3):781–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Van Bambeke F, Van Laethem Y, Courvalin P, et al. Glycopeptide antibiotics: from conventional molecules to new derivatives. Drugs. 2004;64(9):913–36.

    Article  PubMed  Google Scholar 

  26. Allen NE, Nicas TI. Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol Rev. 2003;26(5):511–32.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng M, Ziora ZM, Hansford KA, et al. Anti-cooperative ligand binding and dimerisation in the glycopeptide antibiotic dalbavancin. Org Biomol Chem. 2014;12(16):2568–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Economou NJ, Nahoum V, Weeks SD, et al. A carrier protein strategy yields the structure of dalbavancin. J Am Chem Soc. 2012;134(10):4637–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Belley A, McKay GA, Arhin FF, et al. Oritavancin disrupts membrane integrity of Staphylococcus aureus and vancomycin-resistant enterococci to effect rapid bacterial killing. Antimicrob Agents Chemother. 2010;54(12):5369–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Higgins DL, Chang R, Debabov DV, et al. Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2005;49(3):1127–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Belley A, Harris R, Beveridge T, et al. Ultrastructural effects of oritavancin on methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. Antimicrob Agents Chemother. 2009;53(2):800–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Messina JA, Fowler VGJ, Corey GR. Oritavancin for acute bacterial skin and skin structure infections. Expert Opin Pharmacother. 2015;16(7):1091–8.

    Article  CAS  PubMed  Google Scholar 

  33. Lunde CS, Hartouni SR, Janc JW, et al. Telavancin disrupts the functional integrity of the bacterial membrane through targeted interaction with the cell wall precursor lipid II. Antimicrob Agents Chemother. 2009;53(8):3375–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Song Y, Lunde CS, Benton BM, et al. Further insights into the mode of action of the lipoglycopeptide telavancin through global gene expression studies. Antimicrob Agents Chemother. 2012;56(6):3157–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Barcia-Macay M, Lemaire S, Mingeot-Leclercq MP, et al. Evaluation of the extracellular and intracellular activities (human THP-1 macrophages) of telavancin versus vancomycin against methicillin-susceptible, methicillin-resistant, vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2006;58(6):1177–84.

    Article  CAS  PubMed  Google Scholar 

  36. Domenech O, Dufrene YF, Van Bambeke F, et al. Interactions of oritavancin, a new semi-synthetic lipoglycopeptide, with lipids extracted from Staphylococcus aureus. Biochim Biophys Acta. 2010;1798(10):1876–85.

    Article  CAS  PubMed  Google Scholar 

  37. Munch D, Engels I, Muller A, et al. Structural variations of the cell wall precursor lipid II - influence on binding and activity of the lipoglycopeptide antibiotic oritavancin. Antimicrob Agents Chemother. 2015;59(2):772–81.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Kim SJ, Cegelski L, Stueber D, et al. Oritavancin exhibits dual mode of action to inhibit cell-wall biosynthesis in Staphylococcus aureus. J Mol Biol. 2008;377(1):281–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Patti GJ, Kim SJ, Yu TY, et al. Vancomycin and oritavancin have different modes of action in Enterococcus faecium. J Mol Biol. 2009;392(5):1178–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Mendes RE, Farrell DJ, Sader HS, et al. Baseline activity of telavancin against Gram-positive clinical isolates responsible for documented infections in US hospitals (2011–2012) as determined by the revised susceptibility testing method. Antimicrob Agents Chemother. 2015;59(1):702–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Arhin FF, Sarmiento I, Belley A, et al. Effect of polysorbate 80 on oritavancin binding to plastic surfaces: implications for susceptibility testing. Antimicrob Agents Chemother. 2008;52(5):1597–603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Rennie RP, Koeth L, Jones RN, et al. Factors influencing broth microdilution antimicrobial susceptibility test results for dalbavancin, a new glycopeptide agent. J Clin Microbiol. 2007;45(10):3151–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. In: 25th informational supplement (MS100-S25). Wayne: Clinical and Laboratory Standard Institute; 2015.

  44. Arhin FF, Draghi DC, Pillar CM, et al. Correlation between oritavancin and vancomycin minimum inhibitory concentrations in staphylococci. Int J Antimicrob Agents. 2012;40(6):562–3.

    Article  CAS  PubMed  Google Scholar 

  45. Jones RN, Turnidge JD, Moeck G, et al. Use of in vitro vancomycin testing results to predict susceptibility to oritavancin, a new long-acting lipoglycopeptide. Antimicrob Agents Chemother. 2015;59(4):2405–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Jones RN, Farrell DJ, Flamm RK, et al. Surrogate analysis of vancomycin to predict susceptible categorization of dalbavancin. Diagn Microbiol Infect Dis. 2015;82(1):73–7.

    Article  CAS  PubMed  Google Scholar 

  47. Saravolatz LD, Pawlak J, Johnson LB. In vitro activity of oritavancin against community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA), vancomycin-intermediate S. aureus (VISA), vancomycin-resistant S. aureus (VRSA) and daptomycin-non-susceptible S. aureus (DNSSA). Int J Antimicrob Agents. 2010;36(1):69–72.

    Article  CAS  PubMed  Google Scholar 

  48. Hill CM, Krause KM, Lewis SR, et al. Specificity of induction of the vanA and vanB operons in vancomycin-resistant enterococci by telavancin. Antimicrob Agents Chemother. 2010;54(7):2814–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Streit JM, Sader HS, Fritsche TR, et al. Dalbavancin activity against selected populations of antimicrobial-resistant Gram-positive pathogens. Diagn Microbiol Infect Dis. 2005;53(4):307–10.

    Article  CAS  PubMed  Google Scholar 

  50. Karlowsky JA, Walkty AJ, Baxter MR, et al. In vitro activity of oritavancin against Gram-positive pathogens isolated in Canadian hospital laboratories from 2011 to 2013. Diagn Microbiol Infect Dis. 2014;80(4):311–5.

    Article  CAS  PubMed  Google Scholar 

  51. Citron DM, Tyrrell KL, Goldstein EJC. Comparative in vitro activities of dalbavancin and seven comparator agents against 41 Staphylococcus species cultured from osteomyelitis infections and 18 VISA and hVISA strains. Diagn Microbiol Infect Dis. 2014;79(4):438–40.

    Article  CAS  PubMed  Google Scholar 

  52. Biavasco F, Vignaroli C, Lupidi R, et al. In vitro antibacterial activity of LY333328, a new semisynthetic glycopeptide. Antimicrob Agents Chemother. 1997;41(10):2165–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. O’Connor R, Baines SD, Freeman J, et al. In vitro susceptibility of genotypically distinct and clonal Clostridium difficile strains to oritavancin. J Antimicrob Chemother. 2008;62(4):762–5.

    Article  PubMed  CAS  Google Scholar 

  54. Goldstein EJC, Citron DM, Tyrrell KL, et al. Bactericidal activity of telavancin, vancomycin and metronidazole against Clostridium difficile. Anaerobe. 2010;16(3):220–2.

    Article  CAS  PubMed  Google Scholar 

  55. Goldstein EJC, Citron DM, Merriam CV, et al. In vitro activities of dalbavancin and nine comparator agents against anaerobic gram-positive species and corynebacteria. Antimicrob Agents Chemother. 2003;47(6):1968–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Chilton CH, Freeman J, Crowther GS, et al. Effectiveness of a short (4 day) course of oritavancin in the treatment of simulated Clostridium difficile infection using a human gut model. J Antimicrob Chemother. 2012;67(10):2434–7.

    Article  CAS  PubMed  Google Scholar 

  57. Freeman J, Marquis M, Crowther GS, et al. Oritavancin does not induce Clostridium difficile germination and toxin production in hamsters or a human gut model. J Antimicrob Chemother. 2012;67(12):2919–26.

    Article  CAS  PubMed  Google Scholar 

  58. Chilton CH, Freeman J, Baines SD, et al. Evaluation of the effect of oritavancin on Clostridium difficile spore germination, outgrowth and recovery. J Antimicrob Chemother. 2013;68(9):2078–82.

    Article  CAS  PubMed  Google Scholar 

  59. Arthur M, Depardieu F, Reynolds P, et al. Moderate-level resistance to glycopeptide LY333328 mediated by genes of the vanA and vanB clusters in enterococci. Antimicrob Agents Chemother. 1999;43(8):1875–80.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Song Y, Lunde CS, Benton BM, et al. Studies on the mechanism of telavancin decreased susceptibility in a laboratory-derived mutant. Microb Drug Resist. 2013;19(4):247–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Scherr TD, Heim CE, Morrison JM, et al. Hiding in plain sight: interplay between Staphylococcal biofilms and host immunity. Front Immunol. 2014;5:37.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Garzoni C, Kelley WL. Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol. 2009;17(2):59–65.

    Article  CAS  PubMed  Google Scholar 

  63. Belley A, Neesham-Grenon E, McKay G, et al. Oritavancin kills stationary-phase and biofilm Staphylococcus aureus cells in vitro. Antimicrob Agents Chemother. 2009;53(3):918–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Smith K, Gemmell CG, Lang S. Telavancin shows superior activity to vancomycin with multidrug-resistant Staphylococcus aureus in a range of in vitro biofilm models. Eur J Clin Microbiol Infect Dis. 2013;32(10):1327–32.

    Article  CAS  PubMed  Google Scholar 

  65. Gander S, Kinnaird A, Finch R. Telavancin: in vitro activity against staphylococci in a biofilm model. J Antimicrob Chemother. 2005;56(2):337–43.

    Article  CAS  PubMed  Google Scholar 

  66. LaPlante KL, Mermel LA. In vitro activities of telavancin and vancomycin against biofilm-producing Staphylococcus aureus, S. epidermidis, and Enterococcus faecalis strains. Antimicrob Agents Chemother. 2009;53(7):3166–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Chan C, Hardin TC, Smart JI. A review of telavancin activity in in vitro biofilms and animal models of biofilm-associated infections. Future Microbiol. 2015;1–14.

  68. Barcia-Macay M, Seral C, Mingeot-Leclercq MP, et al. Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob Agents Chemother. 2006;50(3):841–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Seral C, Van Bambeke F, Tulkens PM. Quantitative analysis of gentamicin, azithromycin, telithromycin, ciprofloxacin, moxifloxacin, and oritavancin (LY333328) activities against intracellular Staphylococcus aureus in mouse J774 macrophages. Antimicrob Agents Chemother. 2003;47(7):2283–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Lemaire S, Kosowska-Shick K, Julian K, et al. Activities of antistaphylococcal antibiotics towards the extracellular and intraphagocytic forms of Staphylococcus aureus isolates from a patient with persistent bacteraemia and endocarditis. Clin Microbiol Infect. 2008;14(8):766–77.

    Article  CAS  PubMed  Google Scholar 

  71. Garcia LG, Lemaire S, Kahl BC, et al. Influence of the protein kinase C activator phorbol myristate acetate on the intracellular activity of antibiotics against hemin- and menadione-auxotrophic small-colony variant mutants of Staphylococcus aureus and their wild-type parental strain in human THP-1 cells. Antimicrob Agents Chemother. 2012;56(12):6166–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Garcia LG, Lemaire S, Kahl BC, et al. Pharmacodynamic evaluation of the activity of antibiotics against hemin- and menadione-dependent small-colony variants of Staphylococcus aureus in models of extracellular (broth) and intracellular (THP-1 monocytes) infections. Antimicrob Agents Chemother. 2012;56(7):3700–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Nguyen HA, Denis O, Vergison A, et al. Intracellular activity of antibiotics in a model of human THP-1 macrophages infected by a Staphylococcus aureus small-colony variant strain isolated from a cystic fibrosis patient: pharmacodynamic evaluation and comparison with isogenic normal-phenotype and revertant strains. Antimicrob Agents Chemother. 2009;53(4):1434–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Nguyen HA, Denis O, Vergison A, et al. Intracellular activity of antibiotics in a model of human THP-1 macrophages infected by a Staphylococcus aureus small-colony variant strain isolated from a cystic fibrosis patient: study of antibiotic combinations. Antimicrob Agents Chemother. 2009;53(4):1443–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Van Bambeke F, Carryn S, Seral C, et al. Cellular pharmacokinetics and pharmacodynamics of the glycopeptide antibiotic oritavancin (LY333328) in a model of J774 mouse macrophages. Antimicrob Agents Chemother. 2004;48(8):2853–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Van Bambeke F, Saffran J, Mingeot-Leclercq MP, et al. Mixed-lipid storage disorder induced in macrophages and fibroblasts by oritavancin (LY333328), a new glycopeptide antibiotic with exceptional cellular accumulation. Antimicrob Agents Chemother. 2005;49(5):1695–700.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Lemaire S, Mingeot-Leclercq MP, Tulkens PM, et al. Study of macrophage functions in murine J774 cells and human activated THP-1 cells exposed to oritavancin, a lipoglycopeptide with high cellular accumulation. Antimicrob Agents Chemother. 2014;58(4):2059–66.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Baquir B, Lemaire S, Van Bambeke F, et al. Macrophage killing of bacterial and fungal pathogens is not inhibited by intense intracellular accumulation of the lipoglycopeptide antibiotic oritavancin. Clin Infect Dis. 2012;54(Suppl 3):S229–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Barcia-Macay M, Mouaden F, Mingeot-Leclercq MP, et al. Cellular pharmacokinetics of telavancin, a novel lipoglycopeptide antibiotic, and analysis of lysosomal changes in cultured eukaryotic cells (J774 mouse macrophages and rat embryonic fibroblasts). J Antimicrob Chemother. 2008;61(6):1288–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Arhin FF, McKay GA, Beaulieu S, et al. Time-kill kinetics of oritavancin and comparator agents against Streptococcus pyogenes. Int J Antimicrob Agents. 2009;34(6):550–4.

    Article  CAS  PubMed  Google Scholar 

  81. McKay GA, Beaulieu S, Arhin FF, et al. Time-kill kinetics of oritavancin and comparator agents against Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother. 2009;63(6):1191–9.

    Article  CAS  PubMed  Google Scholar 

  82. Vidaillac C, Parra-Ruiz J, Rybak MJ. In vitro time-kill analysis of oritavancin against clinical isolates of methicillin-resistant Staphylococcus aureus with reduced susceptibility to daptomycin. Diagn Microbiol Infect Dis. 2011;71(4):470–3.

    Article  CAS  PubMed  Google Scholar 

  83. Coyle EA, Rybak MJ. Activity of oritavancin (LY333328), an investigational glycopeptide, compared to that of vancomycin against multidrug-resistant Streptococcus pneumoniae in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2001;45(3):706–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Arhin FF, Sarmiento I, Parr TRJ, et al. Activity of oritavancin and comparators in vitro against standard and high inocula of Staphylococcus aureus. Int J Antimicrob Agents. 2012;39(2):159–62.

    Article  CAS  PubMed  Google Scholar 

  85. Arhin FF, Sarmiento I, Moeck G. Oritavancin retains bactericidal activity in vitro against standard and high inocula of heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA). Int J Antimicrob Agents. 2013;41(4):397–8.

    Article  CAS  PubMed  Google Scholar 

  86. Lin G, Pankuch GA, Appelbaum PC, et al. Activity of telavancin compared to other agents against coagulase-negative staphylococci with different resistotypes by time kill. Diagn Microbiol Infect Dis. 2012;73(3):287–9.

    Article  CAS  PubMed  Google Scholar 

  87. Leonard SN, Szeto YG, Zolotarev M, et al. Comparative in vitro activity of telavancin, vancomycin and linezolid against heterogeneously vancomycin-intermediate Staphylococcus aureus (hVISA). Int J Antimicrob Agents. 2011;37(6):558–61.

    Article  CAS  PubMed  Google Scholar 

  88. Smith JR, Barber KE, Hallesy J, et al. Telavancin demonstrates activity against methicillin-resistant Staphylococcus aureus with reduced susceptibility to vancomycin, daptomycin, and linezolid via broth microdilution minimum inhibitory concentration and one-compartment pharmacokinetic/pharmacodynamic modeling. Antimicrob Agents Chemother. 2015;59(9):5529–34.

    Article  CAS  PubMed  Google Scholar 

  89. Goldstein BP, Draghi DC, Sheehan DJ, et al. Bactericidal activity and resistance development profiling of dalbavancin. Antimicrob Agents Chemother. 2007;51(4):1150–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Baltch AL, Smith RP, Ritz WJ, et al. Comparison of inhibitory and bactericidal activities and postantibiotic effects of LY333328 and ampicillin used singly and in combination against vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 1998;42(10):2564–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Mercier RC, Houlihan HH, Rybak MJ. Pharmacodynamic evaluation of a new glycopeptide, LY333328, and in vitro activity against Staphylococcus aureus and Enterococcus faecium. Antimicrob Agents Chemother. 1997;41(6):1307–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Zelenitsky SA, Booker B, Laing N, et al. Synergy of an investigational glycopeptide, LY333328, with once-daily gentamicin against vancomycin-resistant Enterococcus faecium in a multiple-dose, in vitro pharmacodynamic model. Antimicrob Agents Chemother. 1999;43(3):592–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Lin G, Pankuch G, Appelbaum PC, et al. Antistaphylococcal activity of oritavancin and its synergistic effect in combination with other antimicrobial agents. Antimicrob Agents Chemother. 2014;58(10):6251–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Leonard SN, Supple ME, Gandhi RG, et al. Comparative activities of telavancin combined with nafcillin, imipenem, and gentamicin against Staphylococcus aureus. Antimicrob Agents Chemother. 2013;57(6):2678–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Lin G, Pankuch GA, Ednie LM, et al. Antistaphylococcal activities of telavancin tested alone and in combination by time-kill assay. Antimicrob Agents Chemother. 2010;54(5):2201–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Johnson DM, Fritsche TR, Sader HS, et al. Evaluation of dalbavancin in combination with nine antimicrobial agents to detect enhanced or antagonistic interactions. Int J Antimicrob Agents. 2006;27(6):557–60.

    Article  CAS  PubMed  Google Scholar 

  97. Ambrose PG, Drusano GL, Craig WA. In vivo activity of oritavancin in animal infection models and rationale for a new dosing regimen in humans. Clin Infect Dis. 2012;54(Suppl 3):S220–8.

    Article  CAS  PubMed  Google Scholar 

  98. Kaatz GW, Seo SM, Aeschlimann JR, et al. Efficacy of LY333328 against experimental methicillin-resistant Staphylococcus aureus endocarditis. Antimicrob Agents Chemother. 1998;42(4):981–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Saleh-Mghir A, Lefort A, Petegnief Y, et al. Activity and diffusion of LY333328 in experimental endocarditis due to vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother. 1999;43(1):115–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Rupp ME, Fey PD, Longo GM. Effect of LY333328 against vancomycin-resistant Enterococcus faecium in a rat central venous catheter-associated infection model. J Antimicrob Chemother. 2001;47(5):705–7.

    Article  CAS  PubMed  Google Scholar 

  101. Gerber J, Smirnov A, Wellmer A, et al. Activity of LY333328 in experimental meningitis caused by a Streptococcus pneumoniae strain susceptible to penicillin. Antimicrob Agents Chemother. 2001;45(7):2169–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Cabellos C, Fernandez A, Maiques JM, et al. Experimental study of LY333328 (oritavancin), alone and in combination, in therapy of cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother. 2003;47(6):1907–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Heine HS, Bassett J, Miller L, et al. Efficacy of oritavancin in a murine model of Bacillus anthracis spore inhalation anthrax. Antimicrob Agents Chemother. 2008;52(9):3350–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Hegde SS, Janc JW. Efficacy of telavancin, a lipoglycopeptide antibiotic, in experimental models of Gram-positive infection. Expert Rev Anti Infect Ther. 2014;12(12):1463–75.

    Article  CAS  PubMed  Google Scholar 

  105. Reyes N, Skinner R, Kaniga K, et al. Efficacy of telavancin (TD-6424), a rapidly bactericidal lipoglycopeptide with multiple mechanisms of action, in a murine model of pneumonia induced by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2005;49(10):4344–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Reyes N, Skinner R, Benton BM, et al. Efficacy of telavancin in a murine model of bacteraemia induced by methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2006;58(2):462–5.

    Article  CAS  PubMed  Google Scholar 

  107. Xiong YQ, Hady WA, Bayer AS, et al. Telavancin in therapy of experimental aortic valve endocarditis in rabbits due to daptomycin-nonsusceptible methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56(11):5528–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Madrigal AG, Basuino L, Chambers HF. Efficacy of telavancin in a rabbit model of aortic valve endocarditis due to methicillin-resistant Staphylococcus aureus or vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother. 2005;49(8):3163–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Miro JM, Garcia-de-la-Maria C, Armero Y, et al. Efficacy of telavancin in the treatment of experimental endocarditis due to glycopeptide-intermediate Staphylococcus aureus. Antimicrob Agents Chemother. 2007;51(7):2373–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Crandon JL, Kuti JL, Nicolau DP. Comparative efficacies of human simulated exposures of telavancin and vancomycin against methicillin-resistant Staphylococcus aureus with a range of vancomycin MICs in a murine pneumonia model. Antimicrob Agents Chemother. 2010;54(12):5115–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Stucki A, Gerber P, Acosta F, et al. Efficacy of telavancin against penicillin-resistant pneumococci and Staphylococcus aureus in a rabbit meningitis model and determination of kinetic parameters. Antimicrob Agents Chemother. 2006;50(2):770–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Yin LY, Calhoun JH, Thomas TS, et al. Efficacy of telavancin in the treatment of methicillin-resistant Staphylococcus aureus osteomyelitis: studies with a rabbit model. J Antimicrob Chemother. 2009;63(2):357–60.

    Article  CAS  PubMed  Google Scholar 

  113. Jabes D, Candiani G, Romano G, et al. Efficacy of dalbavancin against methicillin-resistant Staphylococcus aureus in the rat granuloma pouch infection model. Antimicrob Agents Chemother. 2004;48(4):1118–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Andes D, Craig WA. In vivo pharmacodynamic activity of the glycopeptide dalbavancin. Antimicrob Agents Chemother. 2007;51(5):1633–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Lefort A, Pavie J, Garry L, et al. Activities of dalbavancin in vitro and in a rabbit model of experimental endocarditis due to Staphylococcus aureus with or without reduced susceptibility to vancomycin and teicoplanin. Antimicrob Agents Chemother. 2004;48(3):1061–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Baldoni D, Furustrand Tafin U, Aeppli S, et al. Activity of dalbavancin, alone and in combination with rifampicin, against meticillin-resistant Staphylococcus aureus in a foreign-body infection model. Int J Antimicrob Agents. 2013;42(3):220–5.

    Article  CAS  PubMed  Google Scholar 

  117. Heine HS, Purcell BK, Bassett J, et al. Activity of dalbavancin against Bacillus anthracis in vitro and in a mouse inhalation anthrax model. Antimicrob Agents Chemother. 2010;54(3):991–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Hegde SS, Reyes N, Wiens T, et al. Pharmacodynamics of telavancin (TD-6424), a novel bactericidal agent, against gram-positive bacteria. Antimicrob Agents Chemother. 2004;48(8):3043–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Boylan CJ, Campanale K, Iversen PW, et al. Pharmacodynamics of oritavancin (LY333328) in a neutropenic-mouse thigh model of Staphylococcus aureus infection. Antimicrob Agents Chemother. 2003;47(5):1700–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Rubino CM, Bhavnani SM, Moeck G, et al. Population pharmacokinetic analysis for a single 1,200-milligram dose of oritavancin using data from two pivotal phase 3 clinical trials. Antimicrob Agents Chemother. 2015;59(6):3365–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Belley A, Arhin FF, Sarmiento I, et al. Pharmacodynamics of a simulated single 1,200-milligram dose of oritavancin in an in vitro pharmacokinetic/pharmacodynamic model of methicillin-resistant Staphylococcus aureus infection. Antimicrob Agents Chemother. 2013;57(1):205–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Lodise TP, Butterfield JM, Hegde SS, et al. Telavancin pharmacokinetics and pharmacodynamics in patients with complicated skin and skin structure infections and various degrees of renal function. Antimicrob Agents Chemother. 2012;56(4):2062–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Farkas A. Successful target attainment of telavancin at elevated MICs: fact or fiction? Antimicrob Agents Chemother. 2012;56(8):4560–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Dowell JA, Goldstein BP, Buckwalter M, et al. Pharmacokinetic-pharmacodynamic modeling of dalbavancin, a novel glycopeptide antibiotic. J Clin Pharmacol. 2008;48(9):1063–8.

    Article  CAS  PubMed  Google Scholar 

  125. Dunne MW, Puttagunta S, Sprenger CR, et al. Extended-duration dosing and distribution of dalbavancin into bone and articular tissue. Antimicrob Agents Chemother. 2015;59(4):1849–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Goldberg MR, Wong SL, Shaw JP, et al. Lack of effect of moderate hepatic impairment on the pharmacokinetics of telavancin. Pharmacotherapy. 2010;30(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  127. Bradley JS, Puttagunta S, Rubino CM, et al. Pharmacokinetics, safety and tolerability of single dose dalbavancin in children 12–17 years of age. Pediatr Infect Dis J. 2015;34(7):748–52.

    Article  PubMed  Google Scholar 

  128. The Medicines Company. Open-label, dose-finding, pharmacokinetics, safety and tolerability study of oritavancin in pediatric patients with suspected or confirmed bacterial infections [ClinicalTrials.gov identifier NCT02134301]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 8 Nov 2015.

  129. Theravance Biopharma Antibiotics, Inc. An open-label study of the pharmacokinetics of a single dose of telavancin in pediatric subjects aged 1 to 17 years [ClinicalTrials.gov identifier NCT02013141]. US National Institutes of Health, ClinicalTrials.gov. https://www.clinicaltrials.gov. Accessed 8 Nov 2015.

  130. Mitra S, Saeed U, Havlichek DH, et al. Profile of oritavancin and its potential in the treatment of acute bacterial skin structure infections. Infect Drug Resist. 2015;8:189–97.

    PubMed Central  PubMed  Google Scholar 

  131. Barriere SL. ATLAS trials: efficacy and safety of telavancin compared with vancomycin for the treatment of skin infections. Future Microbiol. 2010;5(12):1765–73.

    Article  CAS  PubMed  Google Scholar 

  132. Barriere SL. The ATTAIN trials: efficacy and safety of telavancin compared with vancomycin for the treatment of hospital-acquired and ventilator-associated bacterial pneumonia. Future Microbiol. 2014;9(3):281–9.

    Article  CAS  PubMed  Google Scholar 

  133. Ramdeen S, Boucher HW. Dalbavancin for the treatment of acute bacterial skin and skin structure infections. Expert Opin Pharmacother. 2015;16(13):2073–81.

    PubMed Central  PubMed  Google Scholar 

  134. Scott LJ. Dalbavancin: a review in acute bacterial skin and skin structure infections. Drugs. 2015;75(11):1281–91.

    Article  CAS  PubMed  Google Scholar 

  135. Pushkin R, Barriere SL, Wang W, et al. Telavancin for Acute Bacterial Skin and Skin Structure Infections (ABSSSI)—a post-hoc analysis of the phase 3 ATLAS trials in consideration of the final (2013) FDA guidance. Antimicrob Agents Chemother. 2015;59(10):6170–4.

    Article  PubMed Central  PubMed  Google Scholar 

  136. Seltzer E, Dorr MB, Goldstein BP, et al. Once-weekly dalbavancin versus standard-of-care antimicrobial regimens for treatment of skin and soft-tissue infections. Clin Infect Dis. 2003;37(10):1298–303.

    Article  CAS  PubMed  Google Scholar 

  137. Stryjewski ME, Chu VH, O’Riordan WD, et al. Telavancin versus standard therapy for treatment of complicated skin and skin structure infections caused by gram-positive bacteria: FAST 2 study. Antimicrob Agents Chemother. 2006;50(3):862–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Tice A. Oritavancin: a new opportunity for outpatient therapy of serious infections. Clin Infect Dis. 2012;54(Suppl 3):S239–43.

    Article  CAS  PubMed  Google Scholar 

  139. Liapikou A, Torres A. Emerging drugs on methicillin-resistant Staphylococcus aureus. Expert Opin Emerg Drugs. 2013;18(3):291–305.

    Article  CAS  PubMed  Google Scholar 

  140. Rubinstein E, Lalani T, Corey GR, et al. Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin Infect Dis. 2011;52(1):31–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Lacy MK, Stryjewski ME, Wang W, et al. Telavancin hospital-acquired pneumonia trials: impact of Gram-negative infections and inadequate Gram-negative coverage on clinical efficacy and all-cause mortality. Clin Infect Dis. 2015;61(Suppl 2):S87–93.

    Article  PubMed  Google Scholar 

  142. Corey GR, Kollef MH, Shorr AF, et al. Telavancin for hospital-acquired pneumonia: clinical response and 28-day survival. Antimicrob Agents Chemother. 2014;58(4):2030–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  143. Torres A, Rubinstein E, Corey GR, et al. Analysis of phase 3 telavancin nosocomial pneumonia data excluding patients with severe renal impairment and acute renal failure. J Antimicrob Chemother. 2014;69(4):1119–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Bhavnani SM, Passarell JA, Owen JS, et al. Pharmacokinetic-pharmacodynamic relationships describing the efficacy of oritavancin in patients with Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2006;50(3):994–1000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Stryjewski ME, Lentnek A, O’Riordan W, et al. A randomized phase 2 trial of telavancin versus standard therapy in patients with uncomplicated Staphylococcus aureus bacteremia: the ASSURE study. BMC Infect Dis. 2014;14:289.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  146. Corey GR, Rubinstein E, Stryjewski ME, et al. Potential role for telavancin in bacteremic infections due to gram-positive pathogens: focus on Staphylococcus aureus. Clin Infect Dis. 2015;60(5):787–96.

    Article  PubMed Central  PubMed  Google Scholar 

  147. Joson J, Grover C, Downer C, et al. Successful treatment of methicillin-resistant Staphylococcus aureus mitral valve endocarditis with sequential linezolid and telavancin monotherapy following daptomycin failure. J Antimicrob Chemother. 2011;66(9):2186–8.

    Article  CAS  PubMed  Google Scholar 

  148. Marcos LA, Camins BC. Successful treatment of vancomycin-intermediate Staphylococcus aureus pacemaker lead infective endocarditis with telavancin. Antimicrob Agents Chemother. 2010;54(12):5376–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Kaushal R, Hassoun A. Successful treatment of methicillin-resistant Staphylococcus epidermidis prosthetic joint infection with telavancin. J Antimicrob Chemother. 2012;67(8):2052–3.

    Article  CAS  PubMed  Google Scholar 

  150. Twilla JD, Gelfand MS, Cleveland KO, et al. Telavancin for the treatment of methicillin-resistant Staphylococcus aureus osteomyelitis. J Antimicrob Chemother. 2011;66(11):2675–7.

    Article  CAS  PubMed  Google Scholar 

  151. Brinkman MB, Fan K, Shiveley RL, et al. Successful treatment of polymicrobial calcaneal osteomyelitis with telavancin, rifampin, and meropenem. Ann Pharmacother. 2012;46(6):e15.

    Article  PubMed  Google Scholar 

  152. Raad I, Darouiche R, Vazquez J, et al. Efficacy and safety of weekly dalbavancin therapy for catheter-related bloodstream infection caused by gram-positive pathogens. Clin Infect Dis. 2005;40(3):374–80.

    Article  CAS  PubMed  Google Scholar 

  153. Cho JC, Estrada SJ, Beltran AJ, et al. Treatment of methicillin-sensitive Staphylococcus aureus bacteremia secondary to septic phlebitis using dalbavancin. J Clin Pharm Ther. 2015. doi:10.1111/jcpt.12306.

    PubMed  Google Scholar 

  154. Barriere S, Genter F, Spencer E, et al. Effects of a new antibacterial, telavancin, on cardiac repolarization (QTc interval duration) in healthy subjects. J Clin Pharmacol. 2004;44(7):689–95.

    Article  CAS  PubMed  Google Scholar 

  155. Dunne MW, Zhou M, Darpo B. A thorough QT study with dalbavancin: a novel lipoglycopeptide antibiotic for the treatment of acute bacterial skin and skin-structure infections. Int J Antimicrob Agents. 2015;45(4):393–8.

    Article  CAS  PubMed  Google Scholar 

  156. Stryjewski ME, Graham DR, Wilson SE, et al. Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms. Clin Infect Dis. 2008;46(11):1683–93.

    Article  CAS  PubMed  Google Scholar 

  157. Saravolatz LD, Stein GE. Oritavancin: a long-half-life lipoglycopeptide. Clin Infect Dis. 2015;61(4):627–32.

    Article  PubMed  Google Scholar 

  158. Corey GR, Good S, Jiang H, et al. Single-dose oritavancin versus 7-10 days of vancomycin in the treatment of gram-positive acute bacterial skin and skin structure infections: the SOLO II noninferiority study. Clin Infect Dis. 2015;60(2):254–62.

    Article  PubMed  Google Scholar 

  159. Corey GR, Kabler H, Mehra P, et al. Single-dose oritavancin in the treatment of acute bacterial skin infections. N Engl J Med. 2014;370(23):2180–90.

    Article  PubMed  CAS  Google Scholar 

  160. Ullman MA, Rotschafer JC. Glycopeptides, lipopeptides, lipoglycopeptides. In: Piscitelli SC, Rodvold KA, Pai MP, editors. Drug interactions in infectious diseases. 3rd ed. New York: Humana Press; 2011. p. 333–54.

  161. Tam VH, Ledesma KR, Bowers DR, et al. Kidney injury associated with telavancin dosing regimen in an animal model. Antimicrob Agents Chemother. 2015;59(5):2930–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  162. Barriere SL, Goldberg MR, Janc JW, et al. Effects of telavancin on coagulation test results. Int J Clin Pract. 2011;65(7):784–9.

    Article  CAS  PubMed  Google Scholar 

  163. Wong SL, Goldberg MR, Ballow CH, et al. Effect of telavancin on the pharmacokinetics of the cytochrome P450 3A probe substrate midazolam: a randomized, double-blind, crossover study in healthy subjects. Pharmacotherapy. 2010;30(2):136–43.

    Article  CAS  PubMed  Google Scholar 

  164. Wong SL, Sorgel F, Kinzig M, et al. Lack of pharmacokinetic drug interactions following concomitant administration of telavancin with aztreonam or piperacillin/tazobactam in healthy participants. J Clin Pharmacol. 2009;49(7):816–23.

    Article  CAS  PubMed  Google Scholar 

  165. Antonanzas F, Lozano C, Torres C. Economic features of antibiotic resistance: the case of methicillin-resistant Staphylococcus aureus. Pharmacoeconomics. 2015;33(4):285–325.

    Article  PubMed  Google Scholar 

  166. Laohavaleeson S, Barriere SL, Nicolau DP, et al. Cost-effectiveness of telavancin versus vancomycin for treatment of complicated skin and skin structure infections. Pharmacotherapy. 2008;28(12):1471–82.

    Article  PubMed  Google Scholar 

  167. Li Y, He Y, Sheng Y, et al. Systematic evaluation of non-inferiority and equivalence randomized trials of anti-infective drugs. Expert Rev Anti Infect Ther. 2013;11(12):1377–89.

    Article  CAS  PubMed  Google Scholar 

  168. Henson KE, Levine MT, Wong EA, et al. Glycopeptide antibiotics: evolving resistance, pharmacology and adverse event profile. Expert Rev Anti Infect Ther. 2015;1–14.

  169. Infectious Diseases Society of America. White paper: recommendations on the conduct of superiority and organism-specific clinical trials of antibacterial agents for the treatment of infections caused by drug-resistant bacterial pathogens. Clin Infect Dis. 2012;55(8):1031–46.

    Article  CAS  Google Scholar 

  170. Committee for Human Medicinal Products, EMA. Addendum to the guideline on the evaluation of medicinal products indicated for treatment of bacterial infections. http://www.ema.europa.eu/ema/pages/includes/document/open_document.jsp?webContentId=WC500153953. Accessed 6 Sep 2015.

  171. Kumar A, Mann HJ, Keshtgarpour M, et al. In vitro characterization of oritavancin clearance from human blood by low-flux, high-flux, and continuous renal replacement therapy dialyzers. Int J Artif Organs. 2011;34(11):1067–74.

    Article  CAS  PubMed  Google Scholar 

  172. Vilay AM, Shah KH, Churchwell MD, et al. Modeled dalbavancin transmembrane clearance during intermittent and continuous renal replacement therapies. Blood Purif. 2010;30(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  173. Mendes RE, Farrell DJ, Sader HS, et al. Oritavancin microbiologic features and activity results from the surveillance program in the United States. Clin Infect Dis. 2012;54(Suppl 3):S203–13.

    Article  CAS  PubMed  Google Scholar 

  174. Jones RN, Sader HS, Flamm RK. Update of dalbavancin spectrum and potency in the USA: report from the SENTRY Antimicrobial Surveillance Program (2011). Diagn Microbiol Infect Dis. 2013;75(3):304–7.

    Article  CAS  PubMed  Google Scholar 

  175. McCurdy SP, Jones RN, Mendes RE, et al. In vitro activity of dalbavancin against drug-resistant Staphylococcus aureus isolates from a global surveillance program. Antimicrob Agents Chemother. 2015;59(8):5007–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  176. Leighton A, Gottlieb AB, Dorr MB, et al. Tolerability, pharmacokinetics, and serum bactericidal activity of intravenous dalbavancin in healthy volunteers. Antimicrob Agents Chemother. 2004;48(3):940–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Kiem S, Schentag JJ. Interpretation of epithelial lining fluid concentrations of antibiotics against methicillin resistant Staphylococcus aureus. Infect Chemother. 2014;46(4):219–25.

    Article  PubMed Central  PubMed  Google Scholar 

  178. Gotfried MH, Shaw JP, Benton BM, et al. Intrapulmonary distribution of intravenous telavancin in healthy subjects and effect of pulmonary surfactant on in vitro activities of telavancin and other antibiotics. Antimicrob Agents Chemother. 2008;52(1):92–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Lodise TPJ, Gotfried M, Barriere S, et al. Telavancin penetration into human epithelial lining fluid determined by population pharmacokinetic modeling and Monte Carlo simulation. Antimicrob Agents Chemother. 2008;52(7):2300–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  180. Stryjewski ME, O’Riordan WD, Lau WK, et al. Telavancin versus standard therapy for treatment of complicated skin and soft-tissue infections due to gram-positive bacteria. Clin Infect Dis. 2005;40(11):1601–7.

    Article  CAS  PubMed  Google Scholar 

  181. Jauregui LE, Babazadeh S, Seltzer E, et al. Randomized, double-blind comparison of once-weekly dalbavancin versus twice-daily linezolid therapy for the treatment of complicated skin and skin structure infections. Clin Infect Dis. 2005;41(10):1407–15.

    Article  CAS  PubMed  Google Scholar 

  182. Boucher HW, Talbot GH, Dunne MW. Dalbavancin or oritavancin for skin infections. N Engl J Med. 2014;371(12):1161–2.

    PubMed  Google Scholar 

  183. Drugs for MRSA skin and soft-tissue infections. JAMA. 2014;312(15):1583–4.

Download references

Acknowledgments

F. Van Bambeke is Maître de Recherches from the Belgian du Fonds de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Van Bambeke.

Ethics declarations

Conflicts of Interest

F. Van Bambeke received research grants from Targanta Therapeutics (now The Medicines Company), and Theravance for the performance of in vitro work with oritavancin and telavancin, respectively (most of the corresponding references cited in the present paper).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Bambeke, F. Lipoglycopeptide Antibacterial Agents in Gram-Positive Infections: A Comparative Review. Drugs 75, 2073–2095 (2015). https://doi.org/10.1007/s40265-015-0505-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-015-0505-8

Keywords