Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta–Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

A Correction to this article was published on 09 August 2018

This article has been updated

Abstract

Background

Caffeine is a widely used ergogenic aid with most research suggesting it confers the greatest effects during endurance activities. Despite the growing body of literature around the use of caffeine as an ergogenic aid, there are few recent meta-analyses that quantitatively assess the effect of caffeine on endurance exercise.

Objectives

To summarise studies that have investigated the ergogenic effects of caffeine on endurance time-trial performance and to quantitatively analyse the results of these studies to gain a better understanding of the magnitude of the ergogenic effect of caffeine on endurance time-trial performance.

Methods

A systematic review was carried out on randomised placebo-controlled studies investigating the effects of caffeine on endurance performance and a meta-analysis was conducted to determine the ergogenic effect of caffeine on endurance time-trial performance.

Results

Forty-six studies met the inclusion criteria and were included in the meta-analysis. Caffeine has a small but evident effect on endurance performance when taken in moderate doses (3–6 mg/kg) as well as an overall improvement following caffeine compared to placebo in mean power output (3.03 ± 3.07%; effect size = 0.23 ± 0.15) and time-trial completion time (2.22 ± 2.59%; effect size = 0.41 ± 0.2). However, differences in responses to caffeine ingestion have been shown, with two studies reporting slower time-trial performance, while five studies reported lower mean power output during the time–trial.

Conclusion

Caffeine can be used effectively as an ergogenic aid when taken in moderate doses, such as during sports when a small increase in endurance performance can lead to significant differences in placements as athletes are often separated by small margins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 09 August 2018

    Caffeine is a widely used ergogenic aid with most research suggesting it confers the greatest effects during endurance activities. Despite the growing body of literature around the use of caffeine as an ergogenic aid, there are few recent meta-analyses which quantitatively assess the effect of caffeine on endurance exercise.

References

  1. Christensen PM, Shirai Y, Ritz C, Nordsborg NB. Caffeine and bicarbonate for speed. A meta-analysis of legal supplements potential for improving intense endurance exercise performance. Front Physiol. 2017;8:240.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Del Coso J, Munoz G, Munoz-Guerra J, Muñoz G, Muñoz-Guerra J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl Physiol Nutr Metab. 2011;36:555–61.

    Article  PubMed  Google Scholar 

  3. Graham TE. Caffeine and exercise—metabolism, endurance and performance. Sports Med. 2001;31:785–807.

    Article  PubMed  CAS  Google Scholar 

  4. Spriet LL. Exercise and sport performance with low doses of Caffeine. Sports Med. 2014;44:175–84.

    Article  PubMed Central  Google Scholar 

  5. Doherty M, Smith PM. Effects of Caffeine ingestion on exercise testing: a meta-analysis. Int J Sport Nutr Exerc Metab. 2004;14:626–46.

    Article  PubMed  CAS  Google Scholar 

  6. Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports. 2005;15:69–78.

    Article  PubMed  CAS  Google Scholar 

  7. Hopkins WG, Schabort EJ, Hawley JA. Reliability of power in physical performance tests. Sports Med. 2001;31:211–34.

    Article  PubMed  CAS  Google Scholar 

  8. Tarnopolsky MA. Caffeine and endurance performance. Sports Med. 1994;18:109–25.

    Article  CAS  Google Scholar 

  9. Spriet LL. Caffeine and performance. Int J Sport Nutr. 1995;5:S84–99.

    Article  PubMed  Google Scholar 

  10. Powers SK, Dodd S. Caffeine and endurance performance. Sports Med. 1985;2:165–74.

    Article  PubMed  CAS  Google Scholar 

  11. Dodd SL, Herb RA, Powers SK. Caffeine and exercise performance. Sports Med. 1993;15:14–23.

    Article  PubMed  CAS  Google Scholar 

  12. Burke LM. Caffeine and sports performance. Appl Physiol Nutr Metab. 2008;33:1319–34.

    Article  PubMed  CAS  Google Scholar 

  13. Souza DB, Del Coso J, Casonatto J, Polito MD. Acute effects of caffeine-containing energy drinks on physical performance: a systematic review and meta-analysis. Eur J Nutr. 2017;56:13–27.

    Article  PubMed  CAS  Google Scholar 

  14. Ganio MS, Klau JF, Casa DJ, Armstrong LE, Maresh CM. Effect of Caffeine on sport-specific endurance performance: a systematic review. J.Strength Cond Res. 2009;23:315–24.

    Article  PubMed  Google Scholar 

  15. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kamimori GH, Karyekar CS, Otterstetter R, Cox DS, Balkin TJ, Belenky GL, et al. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int J Pharm. 2002;234:159–67.

    Article  PubMed  CAS  Google Scholar 

  17. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83:713–21.

    PubMed  Google Scholar 

  18. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med Sci Sports Exerc. 2009;41:3–12.

    Article  PubMed  Google Scholar 

  19. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ [Internet]. Br Med J. 1997;315:629–34.

    Article  CAS  Google Scholar 

  20. Astorino TA, Cottrell T, Talhami Lozano A, Aburto-Pratt K, Duhon J. Effect of caffeine on RPE and perceptions of pain, arousal, and pleasure/displeasure during a cycling time trial in endurance trained and active men. Physiol Behav. 2012;106:211–7.

    Article  PubMed  CAS  Google Scholar 

  21. Ganio MS, Johnson EC, Klau JF, Anderson JM, Casa DJ, Maresh CM, et al. Effect of ambient temperature on caffeine ergogenicity during endurance exercise. Eur J Appl Physiol. 2011;111:1135–46.

    Article  PubMed  CAS  Google Scholar 

  22. Mc Naughton LR, Lovell RJ, Siegler JC, Midgley AW, Sandstrom M, Bentley DJ. The effects of caffeine ingestion on time trial cycling performance. J Sports Med Phys Fitness. 2008;48:320–5.

    PubMed  CAS  Google Scholar 

  23. Ivy JL, Costill DL, Fink WJ, Lower RW. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports. 1979;11:6–11.

    Article  PubMed  CAS  Google Scholar 

  24. Hogervorst E, Riedel W, Kovacs E, Brouns F, Jolles J. Caffeine Improves Cognitive Performance After Strenuous Physical Exercise. Int J Sports Med. 1999;20:354–61.

    Article  PubMed  CAS  Google Scholar 

  25. Anderson ME, Bruce CR, Fraser SF, Stepto NK, Klein R, Hopkins WG, et al. Improved 2000-meter rowing performance in competitive oarswomen after caffeine ingestion. Int J Sport Nutr Exerc Metab. 2000;10:464–75.

    Article  PubMed  CAS  Google Scholar 

  26. Bruce CR, Anderson ME, Fraser SF, Stepto NK, Klein R, Hopkins WG, et al. Enhancement of 2000-m rowing performance after caffeine ingestion. Med Sci Sports Exerc. 2000;32:1958–63.

    Article  PubMed  CAS  Google Scholar 

  27. Bridge CA, Jones MA. The effect of caffeine ingestion on 8 km run performance in a field setting. J Sports Sci. 2006;24:433–9.

    Article  PubMed  CAS  Google Scholar 

  28. Wiles JD, Coleman D, Tegerdine M, Swaine IL. The effects of caffeine ingestion on performance time, speed and power during a laboratory-based 1 km cycling time-trial. J Sports Sci. 2006;24:1165–71.

    Article  PubMed  Google Scholar 

  29. Clarke ND, Richardson DL, Thie J, Taylor R. Coffee ingestion enhances one-mile running race performance. Int J Sports Physiol Perform. 2017. https://doi.org/10.1123/ijspp.2017-0456.

    Article  Google Scholar 

  30. Kovacs EMR, Stegen JHCH, Brouns F. Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol. 1998;85:709–15.

    Article  PubMed  CAS  Google Scholar 

  31. Spence AL, Sim M, Landers G, Peeling P. A comparison of caffeine versus pseudoephedrine on cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2013;23:507–12.

    Article  PubMed  CAS  Google Scholar 

  32. van Nieuwenhoven MA, Brouns F, Kovacs EMR. The effect of two sports drinks and water on GI Complaints And Performance During an 18-km run. Int J Sports Med. 2005;26:281–5.

    Article  PubMed  Google Scholar 

  33. Hulston CJ, Jeukendrup AE. Substrate metabolism and exercise performance with caffeine and carbohydrate intake. Med Sci Sports Exerc. 2008;40:2096–104.

    Article  PubMed  CAS  Google Scholar 

  34. Hunter AM, St Clair Gibson A, Collins M, Lambert M, Noakes TD. Caffeine ingestion does not alter performance during a 100-km cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2002;12:438–52.

    Article  PubMed  CAS  Google Scholar 

  35. Miller B, O’Connor H, Orr R, Ruell P, Cheng HL, Chow CM. Combined caffeine and carbohydrate ingestion: effects on nocturnal sleep and exercise performance in athletes. Eur J Appl Physiol. 2014;114:2529–37.

    Article  PubMed  CAS  Google Scholar 

  36. Loy BD, O’Connor PJ, Lindheimer JB, Covert SF. Caffeine is ergogenic for adenosine A2A receptor gene (ADORA2A) T allele homozygotes: a pilot study. J Caffeine Res. 2015;5:73–81.

    Article  CAS  Google Scholar 

  37. Roelands B, Buyse L, Pauwels F, Delbeke F, Deventer K, Meeusen R. No effect of caffeine on exercise performance in high ambient temperature. Eur J Appl Physiol. 2011;111:3089–95.

    Article  PubMed  CAS  Google Scholar 

  38. Cohen BS, Nelson AG, Prevost MC, Thompson GD, Marx BD, Morris GS. Effects of caffeine ingestion on endurance racing in heat and humidity. Eur J Appl Physiol Occup Physiol. 1996;73:358–63.

    Article  PubMed  CAS  Google Scholar 

  39. MacIntosh BR, Wright BM. Caffeine ingestion and performance of a 1,500-metre swim. Can J Appl Physiol. 1995;20:168–77.

    Article  PubMed  CAS  Google Scholar 

  40. Jacobson TL, Febbraio MA, Arkinstall MJ, Hawley JA. Effect of caffeine co-ingested with carbohydrate or fat on metabolism and performance in endurance-trained men. Exp Physiol. 2001;86:137–44.

    Article  PubMed  CAS  Google Scholar 

  41. Skinner TL, Jenkins DG, Coombes JS, Taaffe DR, Leveritt MD. Dose response of caffeine on 2000-m rowing performance. Med Sci Sports Exerc. 2010;42:571–6.

    Article  PubMed  CAS  Google Scholar 

  42. Bortolotti H, Altimari LR, Vitor-Costa M, Cyrino ES. Performance during a 20-km cycling time-trial after caffeine ingestion. J Int Soc Sports Nutr. 2014;11:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Astorino TA, Cottrell T, Lozano AT, Aburto-Pratt K, Duhon J. Ergogenic effects of Caffeine on simulated time-trial performance are independent of fitness Level. J Caffeine Res. 2011;1:179–85.

    Article  CAS  Google Scholar 

  44. Potgieter S, Wright HH, Smith C. Caffeine improves triathlon performance: a field study in males and females. Int J Sport Nutr Exerc Metab. 2018. https://doi.org/10.1123/ijsnem.2017-0165.

    Article  PubMed  Google Scholar 

  45. Stadheim HK, Nossum EM, Olsen R, Spencer M, Jensen J. Caffeine improves performance in double poling during acute exposure to 2000-m altitude. J Appl Physiol. 2015;119:1501–9.

    Article  PubMed  CAS  Google Scholar 

  46. Acker-Hewitt TL, Shafer BM, Saunders MJ, Goh Q, Luden ND. Independent and combined effects of carbohydrate and caffeine ingestion on aerobic cycling performance in the fed state. Appl Physiol Nutr Metab. 2012;37:276–83.

    Article  PubMed  CAS  Google Scholar 

  47. Carr AJ, Gore CJ, Dawson B. Induced alkalosis and caffeine supplementation: effects on 2000-m rowing performance. Int J Sport Nutr Exerc Metab. 2011;21:357–64.

    Article  PubMed  CAS  Google Scholar 

  48. Church DD, Hoffman JR, LaMonica MB, Riffe JJ, Hoffman MW, Baker KM, et al. The effect of an acute ingestion of Turkish coffee on reaction time and time trial performance. J Int Soc Sports Nutr BioMed Central. 2015;12:37.

    Article  CAS  Google Scholar 

  49. O’Rourke MP, O’Brien BJ, Knez W, Paton CD. Caffeine has a small effect on 5-km running performance of well-trained and recreational runners. J Sci Med Sport. 2008;11:231–3.

    Article  PubMed  Google Scholar 

  50. Desbrow B, Barret CM, Minahan CL, Grant GD, Leveritt MD. Caffeine, cycling performance, and exogenous CHO oxidation. Med Sci Sport Exerc. 2009;41:1744–51.

    Article  CAS  Google Scholar 

  51. Kilding AE, Overton C, Gleave J. Effects of Caffeine, sodium bicarbonate, and their combined ingestion on high-intensity cycling performance. Int J Sport Nutr Exerc Metab. 2012;22:175–83.

    Article  PubMed  CAS  Google Scholar 

  52. Dean S, Braakhuis A, Paton C. The effects of EGCG on Fat oxidation and endurance performance in male cyclists. Int J Sport Nutr Exerc Metab. 2009;19:624–44.

    Article  PubMed  CAS  Google Scholar 

  53. Bell DG, McLellan TM, Sabiston CM. Effect of ingesting caffeine and ephedrine on 10-km run performance. Med Sci Sports Exerc. 2002;34:344–9.

    Article  PubMed  CAS  Google Scholar 

  54. Astorino TA, Cottrell T, Lozano AT, Aburto-Pratt K, Duhon J. Increases in cycling performance in response to caffeine ingestion are repeatable. Nutr Res. 2012;32:78–84.

    Article  PubMed  CAS  Google Scholar 

  55. Skinner TL, Jenkins DG, Taaffe DR, Leveritt MD, Coombes JS. Coinciding exercise with peak serum caffeine does not improve cycling performance. J Sci Med Sport. 2013;16:54–9.

    Article  PubMed  Google Scholar 

  56. Womack CJ, Saunders MJ, Bechtel MK, Bolton DJ, Martin M, Luden ND, et al. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J Int Soc Sports Nutr. 2012;9(1):7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Desbrow B, Biddulph C, Devlin B, Grant GD, Anoopkumar-Dukie S, Leveritt MD. The effects of different doses of caffeine on endurance cycling time trial performance. J Sports Sci. 2012;30:115–20.

    Article  PubMed  Google Scholar 

  58. Gonçalves LS, Painelli VS, Yamaguchi G, de Oliveira LF, Saunders B, da Silva RP, et al. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol. 2017;123:213–20.

    Article  PubMed  Google Scholar 

  59. Irwin C, Desbrow B, Ellis A, O’Keeffe B, Grant G, Leveritt M. Caffeine withdrawal and high-intensity endurance cycling performance. J Sports Sci. 2011;29:509–15.

    Article  PubMed  Google Scholar 

  60. Graham-Paulson T, Perret C, Goosey-Tolfrey V. Improvements in cycling but not handcycling 10 km time trial performance in habitual caffeine users. Nutrients. 2016;8:393.

    Article  PubMed Central  CAS  Google Scholar 

  61. Quinlivan A, Irwin C, Grant GD, Anoopkumar-Dukie S, Skinner T, Leveritt M, et al. The effects of red bull energy drink compared with caffeine on cycling time-trial performance. Int J Sports Physiol Perform. 2015;10:897–901.

    Article  PubMed  Google Scholar 

  62. de Santos R, Dal Molin P, Kiss MA, Silva-Cavalcante MD, Correia-Oliveira CR, Bertuzzi R, Bishop DJ, et al. Caffeine Alters Anaerobic Distribution and Pacing during a 4000-m Cycling Time Trial. PLoS One. 2013;8:e75399.

    Article  PubMed Central  CAS  Google Scholar 

  63. Glaister M, Pattison JR, Muniz-Pumares D, Patterson SD, Foley P. Effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance. J Strength Cond Res. 2015;29:165–74.

    Article  PubMed  Google Scholar 

  64. Walker GJ, Dziubak A, Houghton L, Prendergast C, Lim L, Bishop NC. The effect of caffeine ingestion on human neutrophil oxidative burst responses following time-trial cycling. J Sports Sci. 2008;26:611–9.

    Article  PubMed  Google Scholar 

  65. Pitchford NW, Fell JW, Leveritt MD, Desbrow B, Shing CM. Effect of caffeine on cycling time-trial performance in the heat. J Sci Med Sport. 2014;17:445–9.

    Article  PubMed  Google Scholar 

  66. Stadheim HK, Kvamme B, Olsen R, Drevon CA, Ivy JL, Jensen J. Caffeine increases performance in cross-country double-poling time trial exercise. Med Sci Sport Exerc. 2013;45:2175–83.

    Article  CAS  Google Scholar 

  67. Hodgson AB, Randell RK, Jeukendrup AE. The Metabolic and Performance Effects of Caffeine Compared to Coffee during Endurance Exercise. PLoS One. 2013;8:59561.

    Article  CAS  Google Scholar 

  68. Felippe LC, Ferreira GA, Learsi SK, Boari D, Bertuzzi R, Lima-Silva AE. Caffeine increases both total work performed above critical power and peripheral fatigue during a 4-km cycling time trial. J Appl Physiol. 2018. https://doi.org/10.1152/japplphysiol.00930.2017.

    Article  PubMed  Google Scholar 

  69. Cox GR, Desbrow B, Montgomery PG, Anderson ME, Bruce CR, Macrides TA, et al. Effect of different protocols of caffeine intake on metabolism and endurance performance. J Appl Physiol. 2002;93:990–9.

    Article  PubMed  Google Scholar 

  70. Conway KJ, Orr R, Stannard SR. Effect of a divided caffeine dose on endurance cycling performance, postexercise urinary caffeine concentration, and plasma paraxanthine. J Appl Physiol. 2003;94:1557–62.

    Article  PubMed  CAS  Google Scholar 

  71. Guest N, Corey P, Vescovi J, El-Sohemy A. Caffeine, CYP1A2 genotype, and endurance performance in Athletes. Med Sci Sports Exerc. 2018. https://doi.org/10.1249/MSS.0000000000001596.

    Article  PubMed  Google Scholar 

  72. Christensen PM, Petersen MH, Friis SN, Bangsbo J. Caffeine, but not bicarbonate, improves 6 min maximal performance in elite rowers. Appl Physiol Nutr Metab. 2014;39:1058–63.

    Article  PubMed  CAS  Google Scholar 

  73. Black CD, Waddell DE, Gonglach AR. Caffeine’s ergogenic effects on cycling: Neuromuscular and perceptual factors. Med Sci Sports Exerc. 2015;47(6):1145–58.

    Article  PubMed  CAS  Google Scholar 

  74. Saunders B, de Oliveira LF, da Silva RP, de Salles Painelli V, Gonçalves LS, Yamaguchi G, et al. Placebo in sports nutrition: a proof-of-principle study involving caffeine supplementation. Scand J Med Sci Sports. 2017;27(11):1240–7.

    Article  PubMed  CAS  Google Scholar 

  75. Wallman KE, Goh JW, Guelfi KJ. Effects of caffeine on exercise performance in sedentary females. J Sport Sci Med. 2010;9:183–9.

    Google Scholar 

  76. Beaumont RE, James LJ. Effect of a moderate caffeine dose on endurance cycle performance and thermoregulation during prolonged exercise in the heat. J Sci Med Sport. 2017;20(11):1024–8.

    Article  PubMed  Google Scholar 

  77. Ganio MS, Johnson EC, Lopez RM, Stearns RL, Emmanuel H, Anderson JM, et al. Caffeine lowers muscle pain during exercise in hot but not cool environments. Physiol Behav. 2011;102:429–35.

    Article  PubMed  CAS  Google Scholar 

  78. Laurence G, Wallman K, Guelfi K. Effects of caffeine on time trial performance in sedentary men. J Sports Sci. 2012;30:1235–40.

    Article  PubMed  Google Scholar 

  79. Collomp K, Candau R, Millet G, Mucci P, Borrani F, Préfaut C, et al. Effects of salbutamol and caffeine ingestion on exercise metabolism and performance. Int J Sports Med. 2002;23:549–54.

    Article  PubMed  CAS  Google Scholar 

  80. Jenkins NT, Trilk JL, Singhal A, O’Connor PJ, Cureton KJ. Ergogenic effects of low doses of caffeine on cycling performance. Int J Sport Nutr Exerc Metab. 2008;18:328–42.

    Article  PubMed  CAS  Google Scholar 

  81. Loy BD, O’Connor PJ, Lindheimer JB, Covert SF. Caffeine is ergogenic for adenosine A 2A receptor gene (ADORA2A) T allele homozygotes: a pilot Study. J Caffeine Res. 2015;5:73–81.

    Article  CAS  Google Scholar 

  82. Hopkins WG. How to interpret changes in an athletic performance test. Sportscience. 2004;8:1–7.

    Google Scholar 

  83. Magkos F, Kavouras SA. Caffeine Use in Sports, Pharmacokinetics in Man, and Cellular Mechanisms of Action. Crit Rev Food Sci Nutr. 2005;45:535–62.

    Article  PubMed  CAS  Google Scholar 

  84. Chung W, Kang J, Park C, Cho M, Cha Y. Effect of age and smoking on in vivo CYP1A2, flavin-containing monooxygenase, and xanthine oxidase activities in Koreans: determination by caffeine metabolism. Clin Pharmacol Ther. 2000;67:258–66.

    Article  PubMed  CAS  Google Scholar 

  85. Abernethy DR, Todd EL. Impairment of caffeine clearance by chronic use of low-dose oestrogen-containing oral contraceptives. Eur J Clin. 1985;28:425–8.

    Article  CAS  Google Scholar 

  86. Yang A, Palmer AA, de Wit H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology (Berl). 2010;211:245–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Guengerich FP. Cytochrome P450 and Chemical Toxicology. Chem Res Toxicol. 2008;21:70–83.

    Article  PubMed  CAS  Google Scholar 

  88. Butler MA, Iwasakit M, Guengericht FP, Kadlubar FF. Human cytochrome P-450PA (P-450IA2), the phenacetin O-deet-hylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Biochemistry. 1989;86:7696–700.

    CAS  Google Scholar 

  89. Sachse C, Brockmöller J, Bauer S, Roots I. Functional significance of a C → A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol. 1999;47:445–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Ghotbi R, Christensen M, Roh H-K, Ingelman-Sundberg M, Aklillu E, Bertilsson L. Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol. 2007;63:537–46.

    Article  PubMed  CAS  Google Scholar 

  91. Djordjevic N, Ghotbi R, Jankovic S, Aklillu E. Induction of CYP1A2 by heavy coffee consumption is associated with the CYP1A2 −163C > A polymorphism. Eur J Clin Pharmacol. 2010;66:697–703.

    Article  PubMed  CAS  Google Scholar 

  92. Desbrow B, Leveritt M. Awareness and Use of Caffeine by Athletes Competing at the 2005 Ironman Triathlon World Championships. Int J Sport Nutr Exerc Metab. 2006;16:545–58.

    Article  PubMed  CAS  Google Scholar 

  93. IAAF.ORG. IAAF Top Lists Half marathon [Internet]. [cited 2017 Nov 12].

Download references

Acknowledgements

The present article presents material that has not been submitted for publication elsewhere. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajmol Ali.

Ethics declarations

Funding

No funding was received for this work.

Conflict of interests

The authors Kyle Southward, Ajmol Ali, and Kay Rutherfurd-Markwick declare that they have no competing interests to declare in relation to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Southward, K., Rutherfurd-Markwick, K.J. & Ali, A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta–Analysis. Sports Med 48, 1913–1928 (2018). https://doi.org/10.1007/s40279-018-0939-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-018-0939-8