Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximation Algorithms for Solving the k-Chinese Postman Problem Under Interdiction Budget Constraints

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

In this paper, we address the k-Chinese postman problem under interdiction budget constraints (the k-CPIBC problem, for short), which is a further generalization of the k-Chinese postman problem and has many practical applications in real life. Specifically, given a weighted graph \(G=(V,E;w,c;v_{1})\) equipped with a weight function \(w:E\rightarrow {\mathbb {R}}^{+}\) that satisfies the triangle inequality, an interdiction cost function \(c:E\rightarrow {\mathbb {Z}}^{+}\), a fixed depot \(v_{1}\in V\), an integer \(k\in {\mathbb {Z}}^{+}\) and a budget \(B\in {\mathbb {N}}\), we are asked to find a subset \(S_{k}\subseteq E\) such that \(c(S_{k})=\sum _{e\in S_{k}}c(e)\leqslant B\) and that the subgraph \(G\backslash S_{k}\) is connected, the objective is to minimize the value \(\min _{\mathcal{C}_{E\backslash S_{k}}} \max \{w(C_{i})\,\vert \,C_{i}\in \mathcal{C}_{E\backslash S_{k}}\}\) among such all aforementioned subsets \(S_{k}\), where \(\mathcal{C}_{E\backslash S_{k}}\) is a set of k-tours (of \(G\backslash S_{k}\)) starting and ending at the depot \(v_{1}\), jointly traversing each edge in \(G\backslash S_{k}\) at least once, and \(w(C_{i})=\sum _{e\in C_{i}}w(e)\) for each tour \(C_{i}\in \mathcal{C}_{E\backslash S_{k}}\). We obtain the following main results: (1) Given an \(\alpha \)-approximation algorithm to solve the minimization knapsack problem, we design an \((\alpha +\beta )\)-approximation algorithm to solve the k-CPIBC problem, where \(\beta \) \(=\) \(\frac{7}{2}-\frac{1}{k}-\lfloor \frac{1}{k}\rfloor \). (2) We present a \(\beta \)-approximation algorithm to solve the special version of the k-CPIBC problem, where c(e) \(\equiv \) 1 for each edge e in G and \(\beta \) is defined in (1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guan, M.G.: Graphic programming using odd or even points. Acta Math. Sin. 10, 263–266 (1960). (in Chinese)

    Google Scholar 

  2. Edmonds, J.: Maximum matching and a polyhedron with (0,1)-vertices. J. Res. Natl. Bureau Stand. B 69, 125–130 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  3. Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman. Math. Program. 5(1), 88–124 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM J. Comput. 7(2), 178–193 (1978)

    Article  MathSciNet  Google Scholar 

  5. Beullens, P., Muyldermans, L., Cattrysse, D., Oudheusden, D.V.: A guided local search heuristic for the capacitated arc routing problem. Eur. J. Oper. Res. 147(3), 629–643 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corberán, Á., Martí, R., Sanchis, J.M.: A GRASP heuristic for the mixed Chinese postman problem. Eur. J. Oper. Res. 142(1), 70–80 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding, H.L., Li, J.P., Lih, K.W.: Approximation algorithms for solving the constrained arc routing problem in mixed graphs. Eur. J. Oper. Res. 239(1), 80–88 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jozefowiez, N., Semet, F., Talbi, E.G.: Multi-objective vehicle routing problems. Eur. J. Oper. Res. 189, 293–309 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lysgaard, J., Wøhlk, S.: A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem. Eur. J. Oper. Res. 236, 800–810 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mourão, M.C., Amado, L.: Heuristic method for a mixed capacitated arc routing problem: a refuse collection application. Eur. J. Oper. Res. 160, 139–153 (2005)

    Article  MATH  Google Scholar 

  11. Zachariadis, E.E., Kiranoudis, C.T.: Local search for the undirected capacitated arc routing problem with profits. Eur. J. Oper. Res. 210(2), 358–367 (2011)

    Article  MATH  Google Scholar 

  12. Ghare, P.M., Montgomery, D.C., Turner, W.C.: Optimal interdiction policy for a flow network. Naval Res. Logist. Q. 18, 37–45 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  13. Assimakopoulos, N.: A network interdiction model for hospital infection control. Comput. Biol. Med. 17(6), 413–422 (1987)

    Article  MathSciNet  Google Scholar 

  14. Wood, R.K.: Deterministic network interdiction. Math. Comput. Model. 17(2), 1–18 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Church, R.L., Scaparra, M.P., Middleton, R.S.: Identifying critical infrastructure: the median and covering facility interdiction problems. Ann. Assoc. Am. Geogr. 94(3), 491–502 (2004)

    Article  Google Scholar 

  16. Salmeron, J., Wood, K., Baldick, R.: Analysis of electric grid security under terrorist threat. IEEE Trans. Power Syst. 19(2), 905–912 (2004)

    Article  Google Scholar 

  17. Lin, K.C., Chern, M.S.: The most vital edges in the minimum spanning tree problem. Inform. Process. Lett. 45(1), 25–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frederickson, G.N., Solis-Oba, R.: Increasing the weight of minimum spanning trees. J. Algorithms 33(2), 244–266 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bazgan, C., Toubaline, S., Vanderpooten, D.: Critical edges/nodes for the minimum spanning tree problem: complexity and approximation. J. Comb. Optim. 26(1), 178–189 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zenklusen, R.: An O(1)-approximation for minimum spanning tree interdiction. In: Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 709–728 (2015)

  21. Linhares, A., Swamy, C.: Improved algorithms for MST and metric-TSP interdiction. In: Proceedings of 44th International Colloquium on Automata, Languages, and Programming (ICALP) Art.No 32, 14pp (2017) https://doi.org/10.48550/arXiv.1706.00034

  22. Zenklusen, R.: Matching interdiction. Discrete Appl. Math. 158(15), 1676–1690 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dinitz, M., Gupta, A.: Packing interdiction and partial covering problems. In: Proceedings of International Conference on Integer Programming and Combinatorial Optimization (IPCO’13), pp. 157–168 (2013)

  24. Pan, F., Schild, A.: Interdiction problems on planar graphs. Discrete Appl. Math. 198, 215–231 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Golden, B.: A problem in network interdiction. Naval Res. Logist. Q. 25(4), 711–713 (1978)

    Article  MATH  Google Scholar 

  26. Ball, M.O., Golden, B.L., Vohra, R.V.: Finding the most vital arcs in a network. Oper. Res. Lett. 8(2), 73–76 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Israeli, E., Wood, R.K.: Shortest-path network interdiction. Networks 40(2), 97–111 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Phillips, C.A.: The network inhibition problem. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC’93), pp. 776–785 (1993)

  29. Zenklusen, R.: Network flow interdiction on planar graphs. Discrete Appl. Math. 158(13), 1441–1455 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zenklusen, R.: Connectivity interdiction. Oper. Res. Lett. 42(6–7), 450–454 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Armon, A., Zwick, U.: Multicriteria global minimum cuts. Algorithmica 46, 15–16 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Johnson, D.S., Niemi, K.A.: On knapsacks, partitions, and a new dynamic programming technique for trees. Math. Oper. Res. 8, 1–14 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Smith, J.C., Song, Y.J.: A survey of network interdiction models and algorithms. Eur. J. Oper. Res. 283(3), 797–811 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  35. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957)

    Article  Google Scholar 

  36. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)

    Article  Google Scholar 

  37. Gabow, H.N.: Data structures for weighted matching and extensions to b-matching and f-factors. ACM Trans. Algorithms 14(3), Art. 39, 80pp (2018)

  38. Fisher, M.L.: A polynomial algorithm for the degree-constrained minimum K-tree problem. Oper. Res. 42(4), 775–779 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York (1979)

    MATH  Google Scholar 

  40. Güntzer, M.M., Jungnickel, D.: Approximate minimization algorithms for the 0/1 knapsack and subset-sum problem. Oper. Res. Lett. 26(2), 55–66 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  42. Csirik, J., Frenk, J.B.G., Labbé, M., Zhang, S.: Heuristics for the 0–1 min-knapsack problem. Acta Cybern. 10(1–2), 15–20 (1991)

    MathSciNet  MATH  Google Scholar 

  43. Carnes, T., Shmoys, D.B.: Primal-dual schema for capacitated covering problems. Math. Program. 153(2), 289–308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Report 388. Graduate School of Industrial Administration, Carnegie Mellon University (1976)

Download references

Acknowledgements

We are indeed grateful to the two anonymous reviewers for their insightful comments and for their suggested changes that improve the presentation greatly.

Author information

Authors and Affiliations

Authors

Contributions

J.-P. Li has proposed this problem and contributed to providing some ideas, methods, discussion and writing the final manuscript as the corresponding author. P.-X. Pan has finished some design of algorithms, theoretical proofs and the original manuscript. J.-R. Lichen, W.-C. Wang and L.-J. Cai have contributed to providing some ideas, analyses, discussions and revisions. All the authors have discussed the theoretical results, reviewed and approved the final manuscript.

Corresponding author

Correspondence to Jian-Ping Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

These authors are supported by the National Natural Science Foundation of China (Nos. 11861075, 12101593) and Project for Innovation Team (Cultivation) of Yunnan Province (No. 202005AE-160006). Peng-Xiang Pan is also supported by Project of Yunnan Provincial Department of Education Science Research Fund (No. 2020Y0040), Jun-Ran Lichen is also supported by Fundamental Research Funds for the Central Universities (No. buctrc202219), and Jian-Ping Li is also supported by Project of Yunling Scholars Training of Yunnan Province (No. K264202011820).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, PX., Lichen, JR., Wang, WC. et al. Approximation Algorithms for Solving the k-Chinese Postman Problem Under Interdiction Budget Constraints. J. Oper. Res. Soc. China (2023). https://doi.org/10.1007/s40305-023-00488-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40305-023-00488-y

Keywords

Mathematics Subject Classification