Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Numerical approximations of highly oscillatory Hilbert transforms

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the numerical approximations of one-sided Hilbert transforms with oscillatory kernel by means of the multiple integrals. This type of Hilbert transform has two computing difficulties: singularity and oscillation. To avoid the singularity, we transfer the Hilbert transform to an individual oscillatory integral which can be analytically calculated and a non-singular integral which can be well evaluated by the multiple integrals. Numerical examples are provided to illustrate the advantages of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions. National Bureau of Standards, Washington, D.C

    MATH  Google Scholar 

  • Arfken G (1985) Mathematical methods for physicists, 3rd edn. Academic Press, Orlando

    MATH  Google Scholar 

  • Bao G, Sun W (2005) A fast algorithm for the electromagnetic scattering form a large cavity. SIAM J Sci Comput 27:553–574

    Article  MathSciNet  Google Scholar 

  • Chen RY (2012) Numerical analysis for Cauchy principal value integrals of oscillatory kind. Int J Comput Math 89:701–710

    Article  MathSciNet  Google Scholar 

  • Chen RY (2013) Fast integration for Cauchy principal value integrals of oscillatory kind. Acta Appl Math 123:21–30

    Article  MathSciNet  Google Scholar 

  • Chen RY (2014) Fast computation of a class of highly oscillatory integrals. Appl Math Comput 227:494–501

    MathSciNet  MATH  Google Scholar 

  • Davis PJ, Rabinowitz P (1984) Methods of numerical integration, 2nd edn. Academic Press, London

    MATH  Google Scholar 

  • Filon LNG (1928) On a quadrature formula for trigonometric integrals. Pro R Soc Edinburgh 49:38–47

    Article  Google Scholar 

  • Hasegawa T, Sugiura H (2019) Uniform approximation to finite Hilbert transform of oscillatory functions and its algorithm. J Comput Appl Math 358:95–100

    Article  MathSciNet  Google Scholar 

  • Iserles A, Nørsett SP (2005) Efficient quadrature of highly-oscillatory integrals using derivatives. Proc R Soc Lond Ser A Math Phys Eng Sci 461:1383–1399

    Article  MathSciNet  Google Scholar 

  • Levin D (1982) Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations. Math Comput 38:531–538

    Article  MathSciNet  Google Scholar 

  • Olver S (2006) Moments-free numerical integration of highly oscillatory functions. IMA J Numer Anal 26(2):213–227

    Article  MathSciNet  Google Scholar 

  • Wang HY, Xiang SH (2009) Uniform approximations to Cauchy principal value integrals of oscillatory functions. Appl Math Comput 215:1886–1894

    MathSciNet  MATH  Google Scholar 

  • Wang HY, Xiang SH (2010) On the evaluation of Cauchy principal value integrals of oscillatory functions. J Comput Appl Math 234:95–100

    Article  MathSciNet  Google Scholar 

  • Wang HY, Zhang L, Huybrechs D (2013) Asymptotic expansions and fast computation of oscillatory Hilbert transforms. Numer Math 123:709–743

    Article  MathSciNet  Google Scholar 

  • Wong R (1980) Asymptotic expansion of the Hilbert transform. SIAM J Math Anal 11:92–99

    Article  MathSciNet  Google Scholar 

  • Xiang SH, Wang HY (2010) Fast integration of highly oscillatory integrals with exotic oscillators. Math Comput 79:829–844

    Article  MathSciNet  Google Scholar 

  • Xiang SH, Fang CH, Xu ZH (2016) On uniform approximations to hypersingular finite-part integrals. J Math Anal Appl 435(2):1210–1228

    Article  MathSciNet  Google Scholar 

  • Xu ZH (2018) On the numerical quadrature of weakly singular oscillatory integral and its fast implementation. Taiwan J Math 22:979–1000

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruyun Chen.

Additional information

Communicated by Hui Liang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported by Natural Science Foundation of Guangdong Province, China (No. 2015A030313615).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Yu, D. & Chen, J. Numerical approximations of highly oscillatory Hilbert transforms. Comp. Appl. Math. 39, 180 (2020). https://doi.org/10.1007/s40314-020-01193-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01193-9

Keywords

Mathematics Subject Classification