Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Numerical approximation of an electro-elastic frictional contact problem modeled by hemivariational inequality

  • Original Article
  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, an electro-elastic frictional contact problem is studied numerically as a hemivariational inequality. Convergence of the Galerkin approximation for the hemivariational inequality is proved, and Céa’s type inequalities are derived for error estimation. The results are applied to the electro-elastic contact problem, and an optimal order error estimate is deduced for linear element approximation. Finally, two numerical examples are reported, providing numerical evidence of the optimal convergence order theoretically predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atkinson K, Han W (2009) Theoretical numerical analysis: a functional analysis framework, 3rd edn. Springer, New York

    MATH  Google Scholar 

  • Barboteu M, Bartosz K, Han W, Janiczko T (2015) Numerical analysis of a hyperbolic hemivariational inequality arising in dynamic contact. SIAM J Numer Anal 53:527–550

    Article  MathSciNet  Google Scholar 

  • Barboteu M, Fernandez JR, Ouafika Y (2008) Numerical analysis of two frictionless elastic-piezoelectric contact problems. J Math Anal Appl 339:905–917

    Article  MathSciNet  Google Scholar 

  • Barboteu M, Fernandez JR, Ouafika Y (2008) Numerical analysis of a frictionless visco-elastic piezoelectric contact problem. ESAIM: MMNA 42:667–682

    Article  Google Scholar 

  • Barboteu M, Fernandez JR, Tarraf R (2008) Numerical analysis of a dynamic piezoelectric contact problem arising in viscoelasticity. Comput Methods Appl Mech Eng 197:3724–3732

    Article  MathSciNet  Google Scholar 

  • Barboteu M, Sofonea M (2009) Modeling and analysis of the unilateral contact of a piezoelectric body with a conductive support. J Math Anal Appl 358:110–124

    Article  MathSciNet  Google Scholar 

  • Batra RC, Yang JS (1995) Saint-Venant’s principle in linear piezoelectricity. J Elast 38:209–218

    Article  MathSciNet  Google Scholar 

  • Ciarlet PG (1978) The finite element method for elliptic problems. North Holland, Amsterdam

    MATH  Google Scholar 

  • Clarke FH (1983) Optimization and nonsmooth analysis. Wiley, New York

    MATH  Google Scholar 

  • Denkowski Z, Migórski S, Papageorgiou NS (2003) An introduction to nonlinear analysis: applications. Kluwer Academic/Plenum Publishers, Boston

    Book  Google Scholar 

  • Essoufi E, Fakhar R, Koko J (2015) A decomposition method for a unilateral contact problem with Tresca friction arising in electro-elastostatics. Numer Funct Anal Optim 36:1533–1558

    Article  MathSciNet  Google Scholar 

  • Gamorski P, Migórski S (2018) Hemivariational inequalities modeling electro-elastic unilateral frictional contact problem. Math Mech Solids 23:329–347

    Article  MathSciNet  Google Scholar 

  • Han W (2018) Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics. Math Mech Solids 23:279–293

    Article  MathSciNet  Google Scholar 

  • Han W, Huang Z, Wang C, Xu W (2019) Numerical analysis for elliptic hemivariational inequalities for semipermeable media. J Comput Math 37:545–562

    Article  MathSciNet  Google Scholar 

  • Han W, Migórski S, Sofonea M (2014) A class of variational-hemivariational inequalities with applications to frictional contact problems. SIAM J Math Anal 46:3891–3912

    Article  MathSciNet  Google Scholar 

  • Han W, Sofonea M (2002) Quasistatic contact problems in viscoelasticity and viscoplasticity, studies in advanced mathematics, vol 30. Americal Mathematical Society, Providence, RI-International Press, Somerville, MA

    Book  Google Scholar 

  • Han W, Sofonea M (2019) Numerical analysis of hemivariational inequalities in contact mechanics. Acta Numer 28:175–286

    Article  MathSciNet  Google Scholar 

  • Han W, Sofonea M, Barboteu M (2017) Numerical analysis of elliptic hemivariational inequalities. SIAM J Numer Anal 55:640–663

    Article  MathSciNet  Google Scholar 

  • Han W, Sofonea M, Danan D (2018) Numerical analysis of stationary variational–hemivariational inequalities. Numer Math 139:563–592

    Article  MathSciNet  Google Scholar 

  • Han W, Sofonea M, Kazmi K (2007) Analysis and numerical solution of a frictionless contact problem for electro-elastic-visco-plastic materials. Comput Methods Appl Mech Eng 196:3915–3926

    Article  MathSciNet  Google Scholar 

  • Hüeber S, Matei A, Wohlmuth B (2013) A contact problem for electro-elastic materials. Z Angew Math Mech 93:789–800

    Article  MathSciNet  Google Scholar 

  • Lerguet Z, Shillor M, Sofonea M (2007) A frictional contact problem for an electro-viscoelastic body. Electron J Differ Equ 170:1–16

    MathSciNet  MATH  Google Scholar 

  • Migórski S (2006) Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discr Contin Dyn Syst Ser B 6:1339–1356

    MathSciNet  MATH  Google Scholar 

  • Migórski S, Ochal A, Sofonea M (2010) Variational analysis of fully coupled electro-elastic frictional contact problems. Math Nachr 9:1314–1335

    Article  MathSciNet  Google Scholar 

  • Migórski S, Ochal A, Sofonea M (2011) Analysis of a quasistatic contact problem for piezoelectric materials. J Math Anal Appl 382:701–713

    Article  MathSciNet  Google Scholar 

  • Migórski S, Ochal A, Sofonea M (2013) Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems, advances in mechanics and mathematics 26, Springer, New York

  • Sofonea M, Kazmi K, Barboteu M, Han W (2012) Analysis and numerical solution of a piezoelectric frictional contact problem. Appl Math Model 36:4483–4501

    Article  MathSciNet  Google Scholar 

  • Xu W, Huang Z, Han W, Chen W, Wang C (2019) Numerical analysis of history-dependent variational-hemivariational inequalities with applications in contact mechanics. J Comput Appl Math 351:364–377

    Article  MathSciNet  Google Scholar 

  • Xu W, Huang Z, Han W, Chen W, Wang C (2019) Numerical analysis of history-dependent hemivariational inequalities and applications to viscoelastic contact problems with normal penetration. Comput Math Appl 77:2596–2607

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Ziping Huang was partially supported by the cooperative project of Tongji Zhejiang College and Haiyan County Environmental Protection Bureau with No. Haiyan wupu(2018)-001-2. Wenbin Chen is supported by the National Science Foundation of China (11671098) and partially supported by Shanghai Science and technology research program (19JC1420101). Cheng Wang is supported by the 10 plus 10 project of Tongji University under Grant No. 4260141304/004/010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Huang, Z., Han, W. et al. Numerical approximation of an electro-elastic frictional contact problem modeled by hemivariational inequality. Comp. Appl. Math. 39, 265 (2020). https://doi.org/10.1007/s40314-020-01305-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01305-5

Keywords

Mathematics Subject Classification