Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exact determinants and inverses of (2,3,3)-Loeplitz and (2,3,3)-Foeplitz matrices

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper presents the exact determinants and the inverses of \(n\times n\) (2,3,3)-Loeplitz and (2,3,3)-Foeplitz matrices. First, the \(n\times n\) (2,3,3)-Loeplitz and (2,3,3)-Foeplitz matrices are introduced. Next, we calculate the determinants and inverses of them by constructing the transformation matrices. Specifically, the exact inverse of the \(n\times n\) (2,3,3)-Loeplitz matrix is sparse and can be denoted by the \(n\hbox {th}\), \((n+1)\hbox {st}\) and \((n+2)\hbox {th}\) Fibonacci numbers. The exact determinants of the \(n\times n\) (2,3,3)-Foeplitz matrix can be expressed by the \((n+2)\hbox {th}\) Lucas number. The exact inverse of the \(n\times n\) (2,3,3)-Foeplitz matrix can be denoted by only seven entries with each entry being the explicit expression of the Lucas or Fibonacci numbers. We also show the exact determinants and inverses of the \(n\times n\) (2,3,3)-Lankel and (2,3,3)-Fankel matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbulak M, Bozkurt D (2008) On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers. Hacet J Math Stat 37(2):89–95

    MathSciNet  MATH  Google Scholar 

  • Barnabei M, Guerrini C, Montefusco LB (1998) Some algebraic aspects of signal processing. Linear Algebra Appl 284(1–3):3–17

    Article  MathSciNet  Google Scholar 

  • Bozkurt D, Tam TY (2012) Determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas Numbers. Appl Math Comput 219:544–551

    MathSciNet  MATH  Google Scholar 

  • Chen JY (2017) Determinants and inverses of symmetric Poeplitz and Qoeplitz matrix. J Adv Math Comput Sci 24(5):1–20

    Article  Google Scholar 

  • Chen XT (2019) Exact determinants and inverses of skew symmetric generalized Loeplitz matrices. J Adv Math Comput Sci 33(6):1–11

    Google Scholar 

  • Chen XT (2019) Determinants and inverses of skew symmetric generalized Foeplitz matrices. J Adv Math Comput Sci 33(4):1–12

    Google Scholar 

  • Fu YR, Jiang XY, Jiang ZL, Jhang S (2020) Properties of a class of perturbed Toeplitz periodic tridiagonal matrices. Comput Appl Math 39:1–19

    Article  MathSciNet  Google Scholar 

  • Fu YR, Jiang XY, Jiang ZL, Jhang S (2020) Inverses and eigenpairs of periodic tridiagonal Toeplitz matrix with opposite-bordered rows. J Appl Anal Comput 10(4):1599–1613

    MathSciNet  MATH  Google Scholar 

  • Gutiérrez-Gutiérrez J, Crespo PM, Böttcher A (2007) Functions of banded Hermitian block Toeplitz matrices in signal processing. Linear Algebra Appl 422(2–3):788–807

    Article  MathSciNet  Google Scholar 

  • Jiang XY, Hong KC (2015) Explicit inverse matrices of Tribonacci skew circulant type matrices. Appl Math Comput 268:93–102

    MathSciNet  MATH  Google Scholar 

  • Jiang ZL, Sun JX (2017) Determinant and inverse of a Gaussion Fibonacci skew-Hermitian Toeplitz matrix. J Nonlinear Sci Appl 10:3694–3707

    Article  MathSciNet  Google Scholar 

  • Jiang ZL, Gong YP, Gao Y (2014) Invertibility and explicit inverses of circulant-type matrices with \(k\)-Fibonacci and \(k\)-Lucas number. Abstr Appl Anal 2014:238953

    MathSciNet  MATH  Google Scholar 

  • Jiang ZL, Wang WP, Zheng YP, Zuo BS, Niu B (2019) Interesting explicit expression of determinants and inverse matrices for Foeplitz and Loeplitz matrices. Mathematics 7(10):939

    Article  Google Scholar 

  • Liao LD, Zhang GF (2017) New variant of the HSS iteration method for weighted Toeplitz regularized least-squares problems from image restoration. Comput Math Appl 73(11):2482–2499

    Article  MathSciNet  Google Scholar 

  • Liu L, Jiang ZL (2015) Explicit form of the inverse matrices of Tribonacci circulant type matrices. Abstr Appl Anal 10:169726

    MathSciNet  MATH  Google Scholar 

  • Liu J, Ni A, Ni G (2020) A nonconvex \(l_1(l_1-l_2)\) model for image restoration with impulse noise. J Comput Appl Math 378:112934

    Article  MathSciNet  Google Scholar 

  • Liu Y, Wang A, Zhou H, Jia P (2021) Single nighttime image dehazing based on image decomposition. Signal Process 183(5):107986

    Article  Google Scholar 

  • Marivani I, Tsiligianni E, Cornelis B, Deligiannis N (2020) Multimodal deep unfolding for guided image super-resolution. IEEE Trans Image Process 29:8443–8456

    Article  Google Scholar 

  • Saeed K (2014) Carathéodory-Toeplitz based mathematical methods and their algorithmic applications in biometric image processing. Appl Numer Math 75:2–21

    Article  Google Scholar 

  • Shang XL, Li J, Stoica P (2021) Weighted SPICE algorithms for range-doppler imaging using one-bit automotive radar. IEEE J Sel Top Signal Process 15(4):1041–1054

    Article  Google Scholar 

  • Thomas K (2001) Fibonacci and Lucas numbers with applications. John Wiley & Sons

  • Wei YL, Jiang XY, Jiang ZL, Shon S (2020) On inverses and eigenpairs of periodic tridiagonal Toeplitz matrices with perturbed corners. J Appl Anal Comput 10(1):178–191

    MathSciNet  MATH  Google Scholar 

  • Wei YL, Zheng YP, Jiang ZL, Shon S (2021) The inverses and eigenpairs of tridiagonal Toeplitz matrices with perturbed rows. J Appl Math Comput. https://doi.org/10.1007/s12190-021-01532-x

    Article  Google Scholar 

  • Wu YH, Song WR, Zheng JY, Liu F (2021) Non-uniform low-light image enhancement via non-local similarity decomposition model. Signal Process Image Commun 93(2):116141

    Article  Google Scholar 

  • Zhang FZ (2006) The Schur complement and its applications. Springer Science & Business Media

  • Zheng YP, Shon S (2015) Exact determinants and inverses of generalized Lucas skew circulant type matrices. Appl Math Comput 270:105–113

    MathSciNet  MATH  Google Scholar 

  • Zuo BS, Jiang ZL, Fu DQ (2018) Determinants and inverses of Ppoeplitz and Ppankel matrices. Special Matrices 6:201–215

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (No. 12001257 ), the Natural Science Foundation of Shandong Province ( No. ZR2020QA035) and the PhD Research Foundation of Linyi University ( No. LYDX2018BS067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanpeng Zheng or Zhaolin Jiang.

Additional information

Communicated by Jinyun Yuan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Zheng, Y. & Jiang, Z. Exact determinants and inverses of (2,3,3)-Loeplitz and (2,3,3)-Foeplitz matrices. Comp. Appl. Math. 41, 35 (2022). https://doi.org/10.1007/s40314-021-01738-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01738-6

Keywords

Mathematics Subject Classification