Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Semi-implicit FEM for the valuation of American options under the Heston model

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present an efficient numerical method for the valuation of American put options under the Heston model. Firstly, by adding a penalty term, the pricing model, which is a linear complementary problem on an unbounded domain, is transformed into a nonlinear parabolic partial differential equation. Then, the perfectly matched layer technique is applied to truncate the solution domain. To deal with the challenge arising from the nonlinearity, a semi-implicit finite element scheme is utilized, which makes the numerical implementation feasible and efficient. Furthermore, we shall prove that the full-discrete matrix is an M-matrix under some moderate assumptions, which implies the nonnegativity of the numerical solutions. Finally, some numerical simulations are carried out to test the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

The work of Q. Zhang was supported by the education department project of Liaoning Province under the Grant No. LJKZ0157. The work of H. Song was supported by the National Natural Science Foundation of China under the Grant No. 11701210, the education department project of Jilin Province under the Grant No. JJKH20211031KJ, the Natural Science Foundation of Jilin Province under the Grants No. 20190103029JH, 20200201269JC, and the fundamental research funds for the Central Universities. The work of Y. Hao was supported by the National Natural Science Foundation of China under the Grant No. 11901606. The authors also wish to thank the High Performance Computing Center of Jilin University, Computing Center of Jilin Province, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education for essential computing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiming Song.

Additional information

Communicated by Pierre Etore.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The proof of Theorem 5

Appendix: The proof of Theorem 5

In this part, we present the proof of Theorem 5 in detail. Without loss of generality, we apply the equidistant partition with \(\Delta x=\Delta y=h\), and only take the interior point for example to discuss the properties of the discretized matrix. For the other cases, we can obtain the same conclusions by applying the similar techniques. The partition elements around the interior point k are given in Fig. 5.

Fig. 5
figure 5

The spatial partition element

Since the weak form (11) can be reorganized as

$$\begin{aligned}&(1+r\Delta \tau )(u^{m+1}_h,\omega _h)+\Delta \tau \Big \{\frac{1}{2}\Big (y(u^{m+1}_h)_x,(\omega _h)_x\Big )+\rho \xi \Big (y(u^{m+1}_h)_x,(\omega _h)_y\Big )\\&\qquad +\frac{\xi ^2}{2}(y(u^{m+1}_h)_y,(\omega _h)_y)+\Big (\Big (\frac{y}{2}-\mu -y\varpi +\rho \xi \Big )(u^{m+1}_h)_x,\omega _h\Big )\\&\qquad +\Big (\big (\kappa (y-\gamma )-\rho \xi y\varpi +\frac{\xi ^2}{2}\big )(u^{m+1}_h)_y,\omega _h\Big )\\&\qquad +\Big (\big (-\frac{y}{2}({\varpi }'+\varpi ^2) +(\frac{y}{2}-\mu )\varpi \big )u^{m+1}_h,\omega _h\Big )\\&\qquad -\rho \xi y_{\max }\int _{-L-\delta }^{L+\delta }(u^{m+1}_h)_x(\tau ,x,y_{\max })\omega _h(x,y_{\max })\mathrm{d}x\Big \}\\&\quad =(u^{m}_h-\Delta \tau f(u^{m}_h),\omega _h),\quad \forall ~ \omega _h\in V_h^0(\Sigma _{pml}), \end{aligned}$$

the k-th equation of the discretized system (11) could be rewritten as

$$\begin{aligned} A(k,k)u_k^{m+1}+\sum _{i=1}^6A(k,k_i)u_{k_i}^{m+1}=F_k^{m+1}. \end{aligned}$$

Now, we will verify that the discretized matrix is an M-matrix. For simplify, we only discuss the case where \(\delta =0\), other cases are similar. For the first triangle in Fig. 5, the basis functions can be defined as:

$$\begin{aligned} \begin{aligned}&L_k^{(1)}=\frac{h}{2S}(-x+x_{i+1}),\\&L_{k_2}^{(1)}=\frac{h}{2S}(y-y_j),\\&L_{k_1}^{(1)}=\frac{h}{2S}[(x-x_i)-(y-y_j)]. \end{aligned} \end{aligned}$$

Then we have

$$\begin{aligned} A^{(1)}(k,k) =~&(1+r\Delta \tau )(L_k^{(1)},L_k^{(1)})+\Delta \tau \Big \{\frac{1}{2}\Big (y({L_k^{(1)}}\big )_x,({L_k^{(1)}})_x\Big ) +\rho \xi \Big (y({L_k^{(1)}})_{x},({L_k^{(1)}})_y\Big )&\\&+\frac{\xi ^2}{2}\Big (y({L_k^{(1)}})_{y},({L_k^{(1)}})_y\Big ) +\frac{1}{2}\Big (y({L_k^{(1)}})_{x},{L_k^{(1)}}\Big )+\kappa \Big (y({L_k^{(1)}})_{y},{L_k^{(1)}}\Big )&\\&+(\rho \xi -\mu )\Big (({L_k^{(1)}})_{x},{L_k^{(1)}}\Big ) +\Big (\frac{\xi ^2}{2}-\kappa \gamma \Big )\Big (({L_k^{(1)}})_{y},{L_k^{(1)}}\Big )\Big \},\\ =~&\frac{S}{6}(1+r\Delta \tau )+\Delta \tau \Big (\frac{h^4}{48S^2}(h+3y_j)-\frac{h^5}{192S^2}(h+4y_{j})-\frac{h^5}{24S^2}(\rho \xi -\mu )\Big ),&\\ A^{(1)}(k,k_1)=~&(1+r\Delta \tau )(L_{k_1}^{(1)},L_k^{(1)})+\Delta \tau \Big \{\frac{1}{2}\big (y(L_{k_1}^{(1)}\big )_x,({L_k^{(1)}})_x\big ) +\rho \xi \Big (y(L_{k_1}^{(1)})_{x},({L_k^{(1)}})_y\Big )&\\&+\frac{\xi ^2}{2}\Big (y(L_{k_1}^{(1)})_{y},({L_k^{(1)}})_y\Big ) +\frac{1}{2}\Big (y(L_{k_1}^{(1)})_{x},{L_k^{(1)}}\Big )+\kappa \Big (y(L_{k_1}^{(1)})_{y},{L_k^{(1)}}\Big ),&\\&+(\rho \xi -\mu )\Big (({L_{k_1}})_{x},{L_k^{(1)}}\Big ) +\Big (\frac{\xi ^2}{2}-\kappa \gamma \Big )\Big ((L_{k_1}^{(1)})_{y},{L_k^{(1)}}\Big )\Big \}&\\ =~&\frac{S}{12}(1+r\Delta \tau )+\Delta \tau \Big (-\frac{h^4}{48S^2}(h+3y_j)+\frac{h^5}{192S^2}(1-2\kappa )(h+4y_{j})&\\&+\frac{h^5}{24S^2}(\rho \xi -\mu -\frac{\xi ^2}{2}+\kappa \gamma )\Big ),&\\ A^{(1)}(k,k_2)=~&(1+r\Delta \tau )(L_{k_2}^{(1)},L_k^{(1)})+\Delta \tau \Big \{\frac{1}{2}\big (y(L_{k_2}^{(1)}\big )_x,({L_k^{(1)}})_x\big ) +\rho \xi \Big (y({L_{k_2}^{(1)})_{x}},({L_k^{(1)}})_y\Big )&\\&+\frac{\xi ^2}{2}\Big (y(L_{k_2}^{(1)})_{y},({L_k^{(1)}})_y\Big ) +\frac{1}{2}\Big (y(L_{k_2}^{(1)})_{x},{L_k^{(1)}}\Big )+\kappa \Big (y(L_{k_2}^{(1)})_{y},{L_k^{(1)}}\Big )&\\&+(\rho \xi -\mu )\Big ((L_{k_2}^{(1)})_{x},{L_k^{(1)}}\Big ) +\Big (\frac{\xi ^2}{2}-\kappa \gamma \Big )\Big ((L_{k_2}^{(1)})_{y},{L_k^{(1)}}\Big )\Big \}&\\ =~&\frac{S}{12}(1+r\Delta \tau )+\Delta \tau \Big (\frac{\kappa h^5}{96S^2}(h+4y_{j})+\frac{h^5}{24S^2}(\frac{\xi ^2}{2}-\kappa \gamma )\Big ). \end{aligned}$$

For the second triangle, the basis functions can be defined as:

$$\begin{aligned} \begin{aligned}&L_k^{(2)}=\frac{h}{2S}(-y+y_{j+1}),\\&L_{k_2}^{(2)}=\frac{h}{2S}(x-x_i),\\&L_{k_3}^{(2)}=\frac{h}{2S}[(y-y_j)-(x-x_i)], \end{aligned} \end{aligned}$$

and the corresponding coefficients are

$$\begin{aligned} A^{(2)}(k,k)=~&(1+r\Delta \tau )(L_k^{(2)},L_k^{(2)})+\Delta \tau \Big \{\frac{1}{2}\big (y({L_k^{(2)}}\big )_x,({L_k^{(2)}})_x\big ) +\rho \xi \Big (y({L_k^{(2)}})_{x},({L_k^{(2)}})_y\Big )&\\&+\frac{\xi ^2}{2}(y({L_k^{(2)}})_{y},({L_k^{(2)}})_y) +\frac{1}{2}\Big (y({L_k^{(2)}})_{x},{L_k^{(2)}}\Big )+\kappa \Big (y({L_k^{(2)}})_{y},{L_k^{(2)}}\Big )&\\&+(\rho \xi -\mu )\Big (({L_k^{(2)}})_{x},{L_k^{(2)}}\Big ) +\Big (\frac{\xi ^2}{2}-\kappa \gamma \Big )\Big (({L_k^{(2)}})_{y},{L_k^{(2)}}\Big )\Big \}&\\ =~&\frac{S}{6}(1+r\Delta \tau )+\Delta \tau \Big (\frac{\xi ^2h^4}{48S^2}(2h+3y_j)-\frac{\kappa h^5}{48S^2}(h+2y_{j})-\frac{h^5}{24S^2}(\frac{\xi ^2}{2}-\kappa \gamma )\Big ),&\\ A^{(2)}(k,k_2)=~&(1+r\Delta \tau )(L_{k_2}^{(2)},L_k^{(2)})+\Delta \tau \Big \{\frac{1}{2}\big (y(L_{k_2}^{(2)}\big )_x,({L_k^{(2)}})_x\big )+\rho \xi (y(L_{k_2}^{(2)})_{x},({L_k^{(2)}})_y)&\\&+\frac{\xi ^2}{2}\Big (y(L_{k_2}^{(2)})_{y},({L_k^{(2)}})_y\Big ) +\frac{1}{2}\Big (y(L_{k_2}^{(2)})_{x},{L_k^{(2)}}\Big )+\kappa \Big (y(L_{k_2}^{(2)})_{y},{L_k^{(2)}}\Big )\\&+(\rho \xi -\mu )\Big (({L_{k_2}^{(2)}})_{x},{L_k^{(2)}}\Big )+\Big (\frac{\xi ^2}{2}-\kappa \gamma \Big )\Big ((L_{k_2}^{(2)})_{y},{L_k^{(2)}}\Big )\Big \}\\ =~&\frac{S}{12}(1+r\Delta \tau )\\&+\Delta \tau \Big (-\frac{\rho \xi h^4}{24S^2}(2h+3y_j)+\frac{h^5}{96S^2}(h+2y_{j})+\frac{h^5}{24S^2}(\rho \xi -\mu )\Big ),\\ A^{(2)}(k,k_3)=~&(1+r\Delta \tau )(L_{k_3}^{(2)},L_k^{(2)})+\Delta \tau \Big \{\frac{1}{2}\big (y(L_{k_3}^{(2)}\big )_x,({L_k^{(2)}})_x\big ) +\rho \xi (y({L_{k_3}^{(2)})_{x}},({L_k^{(2)}})_y)\\&+\frac{\xi ^2}{2}\Big (y(L_{k_3}^{(2)})_{y},({L_k^{(2)}})_y\Big ) +\frac{1}{2}\Big (y(L_{k_3}^{(2)})_{x},{L_k^{(2)}}\Big )+\kappa \Big (y(L_{k_3}^{(2)})_{y},{L_k^{(2)}}\Big )&\\&+(\rho \xi -\mu )\Big ((L_{k_3}^{(2)})_{x},{L_k^{(2)}}\Big ) +\Big (\frac{\xi ^2}{2}-\kappa \gamma \Big )\Big ((L_{k_3}^{(2)})_{y},{L_k^{(2)}}\Big )\Big \}\\ =~&\frac{S}{12}(1+r\Delta \tau )+\Delta \tau \Big (\frac{\xi h^4}{48S^2}(2h+3y_{j})(2\rho -\xi )-\frac{h^5}{96S^2}(h+2y_j)(1-2\kappa )\\&+\frac{h^5}{24S^2}(\mu -\rho \xi +\frac{\xi ^2}{2}-\kappa \gamma )\Big ). \end{aligned}$$

For the third triangle, the basis functions can be defined as:

$$\begin{aligned} \begin{aligned}&L_k^{(3)}=\frac{h}{2S}[(x-x_i)-(y-y_{j+1})],\\&L_{k_3}^{(3)}=\frac{h}{2S}(y-y_j),\\&L_{k_4}^{(3)}=\frac{h}{2S}(-x+x_i), \end{aligned} \end{aligned}$$

and the corresponding coefficients are

$$\begin{aligned} \begin{aligned} A^{(3)}(k,k)=~&(1+r\Delta \tau )(L_k^{(3)},L_k^{(3)})+\Delta \tau \Big \{\frac{1}{2}\big (y({L_k^{(3)}}\big )_x,({L_k^{(3)}})_x\big ) +\rho \xi (y({L_k^{(3)}})_{x},({L_k^{(3)}})_y)\\&+\frac{\xi ^2}{2}\Big (y({L_k^{(3)}})_{y},({L_k^{(3)}})_y\Big ) +\frac{1}{2}\Big (y({L_k^{(3)}})_{x},{L_k^{(3)}}\Big )+\kappa \Big (y({L_k^{(3)}})_{y},{L_k^{(3)}}\Big )\\&+(\rho \xi -\mu )\Big (({L_k^{(3)}})_{x},{L_k^{(3)}}\Big ) +\Big (\frac{\xi ^2}{2}-\kappa \gamma \Big )\Big (({L_k^{(3)}})_{y},{L_k^{(3)}}\Big )\Big \}\\ =~&\frac{S}{6}(1+r\Delta \tau )+\Delta \tau \Big (\frac{h^4}{48S^2}(h+3y_j)(1-2\rho \xi +\xi ^2)\\&+\frac{h^5}{192S^2}(1-2\kappa )(h+4y_{j}) +\frac{h^5}{24S^2}(\rho \xi -\mu -\frac{\xi ^2}{2}+\kappa \gamma )\Big ),\\ A^{(3)}(k,k_3)=~&(1+r\Delta \tau )(L_{k_3}^{(3)},L_k^{(3)})+\Delta \tau \Big \{\frac{1}{2}\big (y(L_{k_3}^{(3)}\big )_x,({L_k^{(3)}})_x\big )\\&+\rho \xi (y(L_{k_3}^{(3)})_{x},({L_k^{(3)}})_y)\\&+\frac{\xi ^2}{2}(y(L_{k_3}^{(3)})_{y},({L_k^{(3)}})_y)\\&+\frac{1}{2}(y(L_{k_3}^{(3)})_{x},{L_k^{(3)}})+\kappa (y(L_{k_3}^{(3)})_{y},{L_k^{(3)}})\\&+(\rho \xi -\mu )(({L_{k_3}})_{x},{L_k^{(3)}})\\&+(\frac{\xi ^2}{2}-\kappa \gamma )((L_{k_3}^{(3)})_{y},{L_k^{(2)}})\Big \}\\ =~&\frac{S}{12}(1+r\Delta \tau )+\Delta \tau \Big (-\frac{\xi ^2 h^4}{48S^2}(h+3y_j)\\&+\frac{\kappa h^5}{96S^2}(h+4y_{j})+\frac{h^5}{24S^2}(\frac{\xi ^2}{2}-\kappa \gamma )\Big ),\\ A^{(3)}(k,k_4)=~&(1+r\Delta \tau )(L_{k_4}^{(3)},L_k^{(3)})+\Delta \tau \Big \{\frac{1}{2}\big (y(L_{k_4}^{(3)}\big )_x,({L_k^{(3)}})_x\big ) +\rho \xi \Big (y({L_{k_4}^{(3)})_{x}},({L_k^{(3)}})_y\Big )&\\&+\frac{\xi ^2}{2}\Big (y(L_{k_4}^{(3)})_{y},({L_k^{(3)}})_y\Big ) +\frac{1}{2}\Big (y(L_{k_4}^{(3)})_{x},{L_k^{(3)}}\Big )+\kappa \Big (y(L_{k_4}^{(3)})_{y},{L_k^{(3)}}\Big )&\\&+(\rho \xi -\mu )\Big ((L_{k_4}^{(3)})_{x},{L_k^{(3)}}\Big ) +\Big (\frac{\xi ^2}{2}-\kappa \gamma \Big )\Big ((L_{k_4}^{(3)})_{y},{L_k^{(3)}}\Big )\Big \}&\\ =~&\frac{S}{12}(1+r\Delta \tau )+\Delta \tau \Big (-\frac{ h^4}{48S^2}(h+3y_{j})(1-2\rho \xi )&\\&-\frac{h^5}{192S^2}(h+4y_j)+\frac{h^5}{24S^2}(\mu -\rho \xi )\Big ). \end{aligned} \end{aligned}$$

For the fourth triangle, the basis functions can be defined as:

$$\begin{aligned} \begin{aligned}&L_k^{(4)}=\frac{h}{2S}(x-x_{i-1}),\\&L_{k_5}^{(4)}=\frac{h}{2S}(-y+y_j),\\&L_{k_4}^{(4)}=\frac{h}{2S}[(y-y_j)-(x-x_i)], \end{aligned} \end{aligned}$$

and the corresponding coefficients are

$$\begin{aligned} \begin{aligned} A^{(4)}(k,k)=~&(1+r\Delta \tau )(L_k^{(4)},L_k^{(4)})+\Delta \tau \Big \{\frac{1}{2}\big (y({L_k^{(4)}}\big )_x,({L_k^{(4)}})_x\big ) +\rho \xi \Big (y({L_k^{(4)}})_{x},({L_k^{(4)}})_y\Big )&\\&+\frac{\xi ^2}{2}\Big (y({L_k^{(4)}})_{y},({L_k^{(4)}})_y\Big ) +\frac{1}{2}\Big (y({L_k^{(4)}})_{x},{L_k^{(4)}}\Big )+\kappa \Big (y({L_k^{(4)}})_{y},{L_k^{(4)}}\Big )&\\&+(\rho \xi -\mu )\Big (({L_k^{(4)}})_{x},{L_k^{(4)}}\Big ) +\Big (\frac{\xi ^2}{2}-\kappa \gamma \Big )\Big (({L_k^{(4)}})_{y},{L_k^{(4)}}\Big )\Big \}&\\ =~&\frac{S}{6}(1+r\Delta \tau )+\Delta \tau \Big (\frac{h^4}{48S^2}(3y_j-h)+\frac{h^5}{192S^2}(4y_{j}-h)+\frac{h^5}{24S^2}(\rho \xi -\mu )\Big ),&\\ A^{(4)}(k,k_4)=~&(1+r\Delta \tau )(L_{k_4}^{(4)},L_k^{(4)})+\Delta \tau \Big \{\frac{1}{2}\big (y(L_{k_4}^{(4)}\big )_x,({L_k^{(4)}})_x\big ) +\rho \xi (y(L_{k_4}^{(4)})_{x},({L_k^{(4)}})_y)&\\&+\frac{\xi ^2}{2}\Big (y(L_{k_4}^{(4)})_{y},({L_k^{(4)}})_y\Big ) +\frac{1}{2}\Big (y(L_{k_4}^{(4)})_{x},{L_k^{(4)}}\Big )+\kappa \Big (y(L_{k_4}^{(4)})_{y},{L_k^{(4)}}\Big )&\\&+(\rho \xi -\mu )\Big (({L_{k_4}})_{x},{L_k^{(4)}}\Big ) +(\frac{\xi ^2}{2}-\kappa \gamma )((L_{k_4}^{(4)})_{y},{L_k^{(4)}})\Big \}&\\ =~&\frac{S}{12}(1+r\Delta \tau )+\Delta \tau \Big (\frac{h^4}{48S^2}(h-3y_j)+\frac{h^5}{192S^2}(4y_{j}-h)(2\kappa -1)&\\&+\frac{h^5}{24S^2}(\frac{\xi ^2}{2}-\kappa \gamma -\rho \xi +\mu )\Big ),&\\ A^{(4)}(k,k_5)=~&(1+r\Delta \tau )(L_{k_5}^{(4)},L_k^{(4)})+\Delta \tau \Big \{\frac{1}{2}\big (y(L_{k_5}^{(4)}\big )_x,({L_k^{(4)}})_x\big ) +\rho \xi (y({L_{k_5}^{(4)})_{x}},({L_k^{(4)}})_y)&\\&+\frac{\xi ^2}{2}\Big (y(L_{k_5}^{(4)})_{y},({L_k^{(4)}})_y\Big ) +\frac{1}{2}\Big (y(L_{k_5}^{(4)})_{x},{L_k^{(4)}}\Big )+\kappa \Big (y(L_{k_5}^{(4)})_{y},{L_k^{(4)}}\Big )&\\&+(\rho \xi -\mu )\Big ((L_{k_5}^{(4)})_{x},{L_k^{(4)}}\Big ) +\Big (\frac{\xi ^2}{2}-\kappa \gamma \Big )\Big ((L_{k_5}^{(4)})_{y},{L_k^{(4)}}\Big )\Big \}&\\ =~&\frac{S}{12}(1+r\Delta \tau )+\Delta \tau \Big (\frac{ \kappa h^5}{96S^2}(h-4y_{j})-\frac{h^5}{24S^2}(\frac{\xi ^2}{2}-\kappa \gamma )\Big ). \end{aligned} \end{aligned}$$

For the fifth triangle, the basis functions can be defined as:

$$\begin{aligned} \begin{aligned}&L_k^{(5)}=\frac{h}{2S}(y-y_{j-1}),\\&L_{k_5}^{(5)}=\frac{h}{2S}(-x+x_i),\\&L_{k_6}^{(5)}=\frac{h}{2S}[(x-x_i)-(y-y_j)], \end{aligned} \end{aligned}$$

and the corresponding coefficients are

$$\begin{aligned} A^{(5)}(k,k)=~&(1+r\Delta \tau )(L_k^{(5)},L_k^{(5)})+\Delta \tau \big \{\frac{1}{2}\big (y({L_k^{(5)}}\big )_x,({L_k^{(5)}})_x\big ) +\rho \xi (y({L_k^{(5)}})_{x},({L_k^{(5)}})_y)&\\&+\frac{\xi ^2}{2}(y({L_k^{(5)}})_{y},({L_k^{(5)}})_y) +\frac{1}{2}(y({L_k^{(5)}})_{x},{L_k^{(5)}})+\kappa (y({L_k^{(5)}})_{y},{L_k^{(5)}})&\\&+(\rho \xi -\mu )(({L_k^{(5)}})_{x},{L_k^{(5)}}) +(\frac{\xi ^2}{2}-\kappa \gamma )(({L_k^{(5)}})_{y},{L_k^{(5)}})\big \}&\\ =~&\frac{S}{6}(1+r\Delta \tau )+\Delta \tau \Big (\frac{\xi ^2h^4}{48S^2}(3y_j-2h)+\frac{\kappa h^5}{48S^2}(2y_{j}-h)+\frac{h^5}{24S^2}(\frac{\xi ^2}{2}-\kappa \gamma )\Big ),&\\ A^{(5)}(k,k_5)=~&(1+r\Delta \tau )(L_{k_5}^{(5)},L_k^{(5)})+\Delta \tau \Big \{\frac{1}{2}\big (y(L_{k_5}^{(5)}\big )_x,({L_k^{(5)}})_x\big ) +\rho \xi (y(L_{k_5}^{(5)})_{x},({L_k^{(5)}})_y)&\\&+\frac{\xi ^2}{2}(y(L_{k_5}^{(5)})_{y},({L_k^{(5)}})_y) +\frac{1}{2}(y(L_{k_5}^{(5)})_{x},{L_k^{(5)}})+\kappa (y(L_{k_5}^{(5)})_{y},{L_k^{(5)}})&\\&+(\rho \xi -\mu )(({L_{k_5}})_{x},{L_k^{(5)}}) +(\frac{\xi ^2}{2}-\kappa \gamma )((L_{k_5}^{(5)})_{y},{L_k^{(5)}})\Big \}&\\ =~&\frac{S}{12}(1+r\Delta \tau )\\&+\Delta \tau \Big (-\frac{\rho \xi h^4}{24S^2}(3y_j-2h)-\frac{h^5}{96S^2}(2y_{j}-h)-\frac{h^5}{24S^2}(\rho \xi -\mu )\Big ),&\\ A^{(5)}(k,k_6)=~&(1+r\Delta \tau )(L_{k_6}^{(5)},L_k^{(5)})+\Delta \tau \Big \{\frac{1}{2}\big (y(L_{k_6}^{(5)}\big )_x,({L_k^{(5)}})_x\big ) +\rho \xi (y({L_{k_6}^{(5)})_{x}},({L_k^{(5)}})_y)&\\&+\frac{\xi ^2}{2}(y(L_{k_6}^{(5)})_{y},({L_k^{(5)}})_y) +\frac{1}{2}(y(L_{k_6}^{(5)})_{x},{L_k^{(5)}})+\kappa (y(L_{k_6}^{(5)})_{y},{L_k^{(5)}})&\\&+(\rho \xi -\mu )((L_{k_6}^{(5)})_{x},{L_k^{(5)}}) +(\frac{\xi ^2}{2}-\kappa \gamma )((L_{k_6}^{(5)})_{y},{L_k^{(5)}})\Big \}&\\ =~&\frac{S}{12}(1+r\Delta \tau )+\Delta \tau \Big (\frac{h^4}{48S^2}(2\rho \xi -\xi ^2)(3y_{j}-2h)&\\&+\frac{h^5}{96S^2}(1-2\kappa )(2y_j-h) +\frac{h^5}{24S^2}(\rho \xi -\mu -\frac{\xi ^2}{2}+\kappa \gamma )\Big ). \end{aligned}$$

For the sixth triangle, the basis functions can be defined as:

$$\begin{aligned} \begin{aligned}&L_k^{(6)}=\frac{h}{2S}[(y-y_{j-1})-(x-x_i)],\\&L_{k_6}^{(6)}=\frac{h}{2S}(-y+y_j),\\&L_{k_1}^{(6)}=\frac{h}{2S}(x-x_i), \end{aligned} \end{aligned}$$

and the corresponding coefficients are

$$\begin{aligned} A^{(6)}(k,k)=~&(1+r\Delta \tau )(L_k^{(6)},L_k^{(6)})+\Delta \tau \big \{\frac{1}{2}\big (y({L_k^{(6)}}\big )_x,({L_k^{(6)}})_x\big ) +\rho \xi (y({L_k^{(6)}})_{x},({L_k^{(6)}})_y)&\\&+\frac{\xi ^2}{2}(y({L_k^{(6)}})_{y},({L_k^{(6)}})_y) +\frac{1}{2}(y({L_k^{(6)}})_{x},{L_k^{(6)}})+\kappa (y({L_k^{(6)}})_{y},{L_k^{(6)}})&\\&+(\rho \xi -\mu )(({L_k^{(6)}})_{x},{L_k^{(6)}}) +(\frac{\xi ^2}{2}-\kappa \gamma )(({L_k^{(6)}})_{y},{L_k^{(6)}})\big \}&\\ =~&\frac{S}{6}(1+r\Delta \tau )+\Delta \tau \Big (\frac{h^4}{48S^2}(1-2\rho \xi +\xi ^2)(3y_j-h)&\\&+\frac{h^5}{192S^2}(4y_j-h)(2\kappa -1) +\frac{h^5}{24S^2}(\frac{\xi ^2}{2}-\kappa \gamma -\rho \xi +\mu )\Big ),&\\ A^{(6)}(k,k_6)=~&(1+r\Delta \tau )(L_{k_6}^{(6)},L_k^{(6)})+\Delta \tau \Big \{\frac{1}{2}\big (y(L_{k_6}^{(6)}\big )_x,({L_k^{(6)}})_x\big ) +\rho \xi (y(L_{k_6}^{(6)})_{x},({L_k^{(6)}})_y)&\\&+\frac{\xi ^2}{2}(y(L_{k_6}^{(6)})_{y},({L_k^{(6)}})_y) +\frac{1}{2}(y(L_{k_6}^{(6)})_{x},{L_k^{(6)}})+\kappa (y(L_{k_6}^{(6)})_{y},{L_k^{(6)}})&\\&+(\rho \xi -\mu )(({L_{k_6}^{(6)}})_{x},{L_k^{(6)}}) +(\frac{\xi ^2}{2}-\kappa \gamma )((L_{k_6}^{(6)})_{y},{L_k^{(6)}})\Big \}&\\ =~&\frac{S}{12}(1+r\Delta \tau )+\Delta \tau \Big (\frac{\xi ^2 h^4}{48S^2}(h-3y_j)&\\&-\frac{\kappa h^5}{96S^2}(4y_{j}-h)-\frac{h^5}{24S^2}(\frac{\xi ^2}{2}-\kappa \gamma )\Big ),&\\ A^{(6)}(k,k_1)=~&(1+r\Delta \tau )(L_{k_1}^{(6)},L_k^{(6)})+\Delta \tau \Big \{\frac{1}{2}\big (y(L_{k_1}^{(6)}\big )_x,({L_k^{(6)}})_x\big ) +\rho \xi (y({L_{k_1}^{(6)})_{x}},({L_k^{(6)}})_y)&\\&+\frac{\xi ^2}{2}(y(L_{k_1}^{(6)})_{y},({L_k^{(6)}})_y) +\frac{1}{2}(y(L_{k_1}^{(6)})_{x},{L_k^{(6)}})+\kappa (y(L_{k_1}^{(6)})_{y},{L_k^{(6)}})&\\&+(\rho \xi -\mu )((L_{k_1}^{(6)})_{x},{L_k^{(6)}}) +(\frac{\xi ^2}{2}-\kappa \gamma )((L_{k_1}^{(6)})_{y},{L_k^{(6)}})\Big \}&\\ =~&\frac{S}{12}(1+r\Delta \tau )+\Delta \tau \Big (\frac{h^4}{48S^2}(2\rho \xi -1)(3y_{j}-h)&\\&+\frac{h^5}{192S^2}(4y_j-h) +\frac{h^5}{24S^2}(\rho \xi -\mu )\Big ).&\end{aligned}$$

From the above, we can obtain that

$$\begin{aligned} A(k,k)=~&S(1+r\Delta \tau )+\Delta \tau \Big (\frac{h^4 y_j}{4S^2}(1-\rho \xi +\xi ^2)-\frac{\kappa h^6}{16S^2}\Big ),\\ A(k,k_1)=~&\frac{S}{6}(1+r\Delta \tau )+\Delta \tau \Big (\frac{h^4}{24S^2}(3\rho \xi y_j-\rho \xi h-3y_j)+\frac{h^5}{96S^2}(4y_j-4\kappa y_j- \kappa h)\\&+\frac{h^5}{24S^2}(2\rho \xi -2\mu -\frac{\xi ^2}{2}+\kappa \gamma )\Big ),\\ A(k,k_2)=~&\frac{S}{6}(1+r\Delta \tau )+\Delta \tau \Big (\frac{h^5}{96S^2}(\kappa h+4\kappa y_j+h+2 y_j)&\\&+\frac{h^5}{24S^2}(\frac{\xi ^2}{2}-\kappa \gamma +\rho \xi -\mu )-\frac{\rho \xi h^4}{24S^2}(2h+3y_j)\Big ),\\ A(k,k_3)=~&\frac{S}{6}(1+r\Delta \tau )+\Delta \tau \Big (\frac{\xi h^4}{48S^2}(2\rho (2h+3y_j)-3\xi (h+2y_j))+\frac{h^5}{96S^2}((3\kappa -1)h\\&+2y_j(4\kappa -1))+\frac{h^5}{24S^2}(\mu -\rho \xi +\xi ^2-2\kappa \gamma )\Big ),\\ A(k,k_4)=~&\frac{S}{6}(1+r\Delta \tau )+\Delta \tau \Big (\frac{h^4}{24S^2}(\rho \xi h+3\rho \xi y_j-3y_j)+\frac{h^5}{96S^2}(4\kappa y_j-4 y_j-\kappa h)\\&+\frac{h^5}{24S^2}(\frac{\xi ^2}{2}-\kappa \gamma -2\rho \xi +2\mu )\Big ),\\ A(k,k_5)=~&\frac{S}{6}(1+r\Delta \tau )+\Delta \tau \Big (-\frac{\rho \xi h^4}{24 S^2}(3y_j-2h)+\frac{h^5}{96S^2}((\kappa +1)h-2y_j(2\kappa +1))\\&-\frac{h^5}{24S^2}(\frac{\xi ^2}{2}-\kappa \gamma +\rho \xi -\mu )\Big ),\\ A(k,k_6)=~&\frac{S}{6}(1+r\Delta \tau )+\Delta \tau \Big (\frac{h^4}{48S^2}(2\rho \xi (3y_j-2h)-3\xi ^2(2y_j-h))+\frac{h^5}{96S^2}(2y_j-h\\&+\kappa (3h-8y_j))+\frac{h^5}{24S^2}(\rho \xi -\mu -\xi ^2+2\kappa \gamma )\Big ). \end{aligned}$$

Under the assumptions of Theorem 5, it is not difficult to verify

$$\begin{aligned} \begin{aligned}&A(k,k)>0,\\&A(k,k_i)<0,~~i=1,\ldots ,6,\\&A(k,k)+\sum _{i=1}^6A(k,k_i)>0. \end{aligned} \end{aligned}$$

Hence, the coefficient matrix of system (11) is an M-matrix, whose inverse is nonnegative. Since \(F_k^m\ge 0\), \(u^m_k(k=1,2,\ldots ,(N_1+1)(N_2+1))\) are all nonnegative.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Song, H. & Hao, Y. Semi-implicit FEM for the valuation of American options under the Heston model. Comp. Appl. Math. 41, 73 (2022). https://doi.org/10.1007/s40314-022-01764-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-01764-y

Keywords

Mathematics Subject Classification