Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Edge sketches for multi-modal image registration based on Blake–Zisserman type energy

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we are interested in deformable registration models for multi-modality images. We introduce a new similarity term for image registration which is based on the geometric information (edges and thin structures) extracted from the images using the Blake–Zisserman’s energy. The latter is well suited for detecting discontinuities at different scales, i.e., of first and second order. We start by giving a theoretical analysis of the proposed model. Then, we use the Gauss–Newton method and multilevel technique to speed up the numerical computations for the solution of this model. Finally, we present some numerical results of the new approach and we compare them with those obtained by some existing methods. The experiments illustrate the efficiency and effectiveness of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alavi A, Bar-Joseph Z (2020) Iterative point set registration for aligning scRNA-seq data. PLoS Comput Biol 16(10):1007939

    Article  Google Scholar 

  • Beroiz M, Cabral JB, Sanchez B (2020) Astroalign: a Python module for astronomical image registration. Astron Comput 32:100384

    Article  Google Scholar 

  • Blake A, Zisserman A (1987) Visual reconstruction. MIT Press, Cambridge

    Book  Google Scholar 

  • Burger M, Modersitzki J, Ruthotto L (2013) A hyperelastic regularization energy for image registration. SIAM J Sci Comput 35(1):132–148

    Article  MathSciNet  Google Scholar 

  • Chen K, Lui LM, Modersitzki J (2019) Image and surface registration. Handb Numer Anal 20:579–611

    MathSciNet  MATH  Google Scholar 

  • Chumchob N, Chen K (2009) A robust affine image registration method. Int J Numer Anal Model 6(2):311–334. http://www.math.ualberta.ca/ijnam/Volume-6-2009/No-2-09/2009-02-09.pdf

  • Collignon A, Vandermeulen D, Suetens P, Marchal G (1995) 3D multi-modality medical image registration using feature space clustering. In: Ayache N (ed) Computer vision, virtual reality and robotics in medicine. CVRMed 1995. Lecture notes in computer science, vol 905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49197-2_22

  • Droske M, Ring W (2006) A Mumford–Shah level-set approach for geometric image registration. SIAM J Appl Math 66(6):2127–2148

    Article  MathSciNet  Google Scholar 

  • Fischer B, Modersitzki J (2002) Fast diffusion registration. Contemp Math 313:117–128

    Article  MathSciNet  Google Scholar 

  • Gigengack F, Ruthotto L, Burger M, Wolters CH, Jiang X, Schafers KP (2011) Motion correction in dual gated cardiac PET using mass-preserving image registration. IEEE Trans Med Imaging 31(3):698–712

    Article  Google Scholar 

  • Goshtasby AA (2005) 2-D and 3-D image registration: for medical, remote sensing, and industrial applications. Wiley, New Jersey

    Google Scholar 

  • Haber E, Modersitzki J (2004) Numerical methods for volume preserving image registration. Inverse Probl 20(5):1621

    Article  MathSciNet  Google Scholar 

  • Haber E, Modersitzki J (2006) Intensity gradient based registration and fusion of multi-modal images. In: Larsen R, Nielsen M, Sporring J (eds) Medical image computing and computer-assisted intervention - MICCAI 2006. MICCAI 2006. Lecture notes in computer science, vol 4191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11866763_89

  • Hodneland E, Lundervold A, Rørvik J, Munthe-Kaas AZ (2014) Normalized gradient fields for nonlinear motion correction of DCE-MRI time series. Comput Med Imaging Graph 38(3):202–210

    Article  Google Scholar 

  • Hu W, Xie Y, Li L, Zhang W (2014) A total variation based nonrigid image registration by combining parametric and non-parametric transformation models. Neurocomputing 144:222–237

    Article  Google Scholar 

  • König L, Rühaak J (2014) A fast and accurate parallel algorithm for non-linear image registration using Normalized Gradient fields. In: 2014 IEEE 11th international symposium on biomedicalimaging (ISBI), pp. 580–583. https://doi.org/10.1109/ISBI.2014.6867937

  • Loeckx D, Slagmolen P, Maes F, Vandermeulen D, Suetens P (2009) Nonrigid image registration using conditional mutual information. IEEE Trans Med Imaging 29(1):19–29

    Article  Google Scholar 

  • Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2):187–198

    Article  Google Scholar 

  • Modersitzki J (2009) FAIR: flexible algorithms for image registration. SIAM, Philadelphia

    Book  Google Scholar 

  • Papafitsoros K, Schoenlieb CB, Sengul B (2013) Combined first and second order total variation inpainting using split Bregman. Image Process On Line 3:112–136

    Article  Google Scholar 

  • Pluim JP, Maintz JA, Viergever MA (2000) Image registration by maximization of combined mutual information and gradient information. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, vol 9, pp 452–461

  • Pluim JP, Maintz JA, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. In: IEEE Trans Med Imaging 22(8):986–1004. https://doi.org/10.1109/TMI.2003.815867

  • Quang TT, Chen WF, Papay FA, Liu Y (2020) Dynamic, real-time, fiducial-free surgical navigation with integrated multimodal optical imaging. IEEE Photonics J 13(1):1–13

    Article  Google Scholar 

  • Rühaak J, König L, Hallmann M, Papenberg N, Heldmann S, Schumacher H, Fischer B (2013) A fully parallel algorithm for multimodal image registration using normalized gradient fields. In: 2013 IEEE 10th international symposium on biomedical imaging, pp. 572–575. https://doi.org/10.1109/ISBI.2013.6556539

  • Scherzer O (2006) Mathematical models for registration and applications to medical imaging. Springer, Berlin

    Book  Google Scholar 

  • Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82(7–8):518–529

    Article  Google Scholar 

  • Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey. IEEE Trans Med Imaging 32(7):1153–1190

    Article  Google Scholar 

  • Theljani A, Belhachmi Z (2021) A discrete approximation of Blake and Zisserman energy in image denoising with optimal choice of regularization parameters. Math Methods Appl Sci 44(5):3857–3871

    Article  MathSciNet  Google Scholar 

  • Theljani A, Chen K (2019) An augmented Lagrangian method for solving a new variational model based on gradients similarity measures and high order regularization for multimodality registration. Inverse Probl Imaging 13(2):309–335

    Article  MathSciNet  Google Scholar 

  • Vercauteren T, Pennec X, Perchant A, Ayache N (2009) Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1):61–72

    Article  Google Scholar 

  • Vogel CR (2002) Computational methods for inverse problems. SIAM, Philadelphia

    Book  Google Scholar 

  • Xing C, Qiu P (2011) Intensity-based image registration by nonparametric local smoothing. IEEE Trans Pattern Anal Mach Intell 33(10):2081–2092

    Article  Google Scholar 

  • Zanetti M, Vitti A (2013) The Blake–Zisserman model for digital surface models segmentation. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 5:2

    Google Scholar 

  • Zhang D, Theljani A, Chen K (2019) On a new diffeomorphic multi-modality image registration model and its convergent Gauss–Newton solver. J Math Res Appl 39(6):633–656

    MathSciNet  MATH  Google Scholar 

  • Zhang J, Hu J, Jiang Z, Zhang K, Liu P, Wang C, Yuan Q, Pianetta P, Liu Y (2021) Automatic 3D image registration for nano-resolution chemical mapping using synchrotron spectro-tomography. J Synchrotron Radiat 28(1):278–282. https://doi.org/10.1107/S1600577520014691

  • Zhou XP (1998) Weak lower semicontinuity of a functional with any order. J Math Anal Appl 221(1):217–237

    Article  MathSciNet  Google Scholar 

  • Zitova B, Flusser J (2003) Image registration methods: a survey. Image Vis Comput 21(11):977–1000

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Moakher.

Additional information

Communicated by Antonio José Silva Neto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lajili, M., Rjaibi, B., Theljani, A. et al. Edge sketches for multi-modal image registration based on Blake–Zisserman type energy. Comp. Appl. Math. 41, 315 (2022). https://doi.org/10.1007/s40314-022-02020-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02020-z

Keywords

MSC Classification