Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sliding mode fault-tolerant control for T–S fuzzy system: a singular system approach

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The problem of sliding mode fault-tolerant control (SMFTC) for T–S fuzzy systems is addressed in this paper. The case that the fuzzy system has different input matrices, and the input uncertainties is considered, which is more universal than the existing results. A sliding mode based observer is constructed to estimate the system states. Then, fuzzy linear sliding surfaces are constructed for the error system and the observer, and the restricted condition that all the input matrices are common existing in many results is removed. In the sequel, a singular system approach (SSA) is developed to deal with the input uncertainties. Meanwhile, an adaptive sliding mode fault-tolerant controller is constructed, which can completely compensate the effects of the fault and stabilize the fault system. Finally, the theoretical method is verified by simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beyhan S (2016) Adaptive fuzzy terminal sliding-mode observer with experimental applications. Int J Fuzzy Syst 18(4):585–594

    Article  MathSciNet  Google Scholar 

  • Boukas EK (2008) Control of singular systems with random abrupt changes. Springer, Berlin

    MATH  Google Scholar 

  • Brahim IH, Chaabane M, Mehdi D (2017) Fault-tolerant control for T–S fuzzy descriptor systems with sensor faults: an LMI approach. Int J Fuzzy Syst 19(2):516–527

    Article  MathSciNet  Google Scholar 

  • Cao F, Sun H, Li YM, Tong SC (2019) Fuzzy adaptive fault-tolerant control for a class of active suspension systems with time delay. Int J Fuzzy Syst 21(7):2054–2065

    Article  MathSciNet  Google Scholar 

  • Chayaopas N, Assawinchaichote W (2018) A novel approach to robust \(H_\infty \) integral control for T–S fuzzy systems. Comput Appl Math 37:954–977

    Article  MathSciNet  MATH  Google Scholar 

  • Dai L (1989) Singular control systems. Springer, Berlin

    Book  MATH  Google Scholar 

  • Ding SX (2013) Model based fault diagnosis techniques design schemes, algorithms and tools. Springer, London

    Book  MATH  Google Scholar 

  • Edwards C, Spurgeon SK (1998) Sliding mode control: theory and applications. Taylor-Francis, London

    Book  MATH  Google Scholar 

  • Feng ZG, Yang Y, Jiang ZY, Zhao YX, Yuan X (2021) Admissibility and admissibilization of singular polynomial fuzzy systems with time-varying delay. Int J Fuzzy Syst 23(1):81–93

    Article  Google Scholar 

  • Gao Q, Feng G, Wang Y, Qiu JB (2012) Universal fuzzy controllers based on generalized T–S fuzzy models. Fuzzy Sets Syst 201:55–70

    Article  MathSciNet  MATH  Google Scholar 

  • Gao Q, Feng G, Liu L, Qiu JB, Wang Y (2014a) An ISMC approach to robust stabilization of uncertain stochastic time-delay systems. IEEE Trans Ind Electron 61(12):6986–6994

  • Gao Q, Feng G, Liu L, Qiu JB, Wang Y (2014b) Robust \(H_\infty \) control for stochastic T–S fuzzy systems via integral sliding mode approach. IEEE Trans Fuzzy Syst 22(4):870–881

  • Han XJ, Ma YC (2022) Passivity analysis for singular systems with randomly occurring uncertainties via the event-based sliding mode control. Comput Appl Math 39:99. https://doi.org/10.1007/s40314-020-1086-z

    Article  MathSciNet  MATH  Google Scholar 

  • Han CS, Zhang GJ, Wu LG, Zeng QS (2012) Sliding mode control of T–S fuzzy descriptor systems with time-delay. J Frankl Inst 349(4):1430–1444

    Article  MathSciNet  MATH  Google Scholar 

  • Han XJ, Cheng NW, Fu L, Ma YC (2018) Observer-based finite-time \(H_\infty \) control of the T–S fuzzy system with time-varying delay and output constraints. Comput Appl Math 37:6176–6197

    Article  MathSciNet  MATH  Google Scholar 

  • Hu J, Wang ZD, Niu YG, Stergioulas LK (2012) \(H_\infty \) sliding mode observer design for a class of nonlinear discrete time-delay systems: a delay-fractioning approach. Int J Robust Nonlinear Control 22:1806–1826

    Article  MathSciNet  MATH  Google Scholar 

  • Li RC, Yang Y (2020a) Fault tolerant control for T–S fuzzy stochastic singular systems. IEEE Trans Fuzzy Syst 29:3925–3935. https://doi.org/10.1109/TFUZZ.2020.3029303

  • Li RC, Yang Y (2020b) Fault detection for T–D fuzzy singular systems via integral sliding modes. J Frankl Inst 357:13125–13143

  • Li RC, Yang Y (2021) Sliding mode observer-based fault reconstruction for T–S fuzzy descriptor systems. IEEE Trans Syst Man Cybern Syst 51(8):5046–5055

    Article  Google Scholar 

  • Li RC, Zhang QL (2018) Robust \(H_\infty \) sliding mode observer design for a class of Takagi–Sugeno fuzzy descriptor systems with time-varying delay. Applied Math Comput 337:158–178

    Article  MathSciNet  MATH  Google Scholar 

  • Li LL, Ding SX, Qiu JB, Yang Y, Xu DM (2017) Fuzzy observer-based fault detection design approach for nonlinear processes. IEEE Trans Syst Man Cybern Syst 47(8):1941–1952

    Article  Google Scholar 

  • Liu M, Cao X, Shi P (2013) Fault estimation and tolerant control for fuzzy stochastic systems. IEEE Trans Fuzzy Syst 21(2):221–229

    Article  Google Scholar 

  • Liu XX, Gao ZW, Zhang AH (2019) Observer-based fault estimation and tolerant control for stochastic Takagi–Sugeno fuzzy systems with Brownian parameter perturbations. Automatica 102:137–149

    Article  MathSciNet  MATH  Google Scholar 

  • Ma SP, Boukas EK (2009) A singular system approach to robust sliding mode control for uncertain Markov jump systems. Automatica 45:2707–2713

    Article  MathSciNet  MATH  Google Scholar 

  • Ma YC, Chen H (2017) Finite-time fault tolerant control of uncertain singular Markovian jump systems with bounded transition probabilities. Comput Appl Math 36:929–953

    Article  MathSciNet  MATH  Google Scholar 

  • Petersen IR (1987) A stabilization algorithm for a class of uncertain linear systems. Syst Control Lett 8(4):351–357

    Article  MathSciNet  MATH  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132

    Article  MATH  Google Scholar 

  • Tan CP, Edwards C (2001) An LMI approach for designing sliding mode observers. Int J Control 74(16):1559–1568

    Article  MathSciNet  MATH  Google Scholar 

  • Tanaka K, Wang H (2001) Fuzzy control systems design and analysis: a linear matrix inequality approach. Wiley, New York

    Book  Google Scholar 

  • Wei ZQ, Li H, Ma YC (2021) Observer-based mixed \(H_\infty \)/passive adaptive sliding mode control for semi-Markovian jump system with time-varying delay. Comput Appl Math 40:287. https://doi.org/10.1007/s40314-021-01615-2

    Article  MathSciNet  MATH  Google Scholar 

  • Wu LG, Ho DWC (2010) Sliding mode control of singular stochastic hybrid systems. Automatica 46(4):779–783

    Article  MathSciNet  MATH  Google Scholar 

  • Xu SY, Dooren PV, Stefan R, Lam J (2002) Robust stability and stabilization for singular systems with state delay and parameter uncertainty. IEEE Trans Autom Control 47(7):1122–1128

    Article  MathSciNet  MATH  Google Scholar 

  • Yang HY, Jiang YC, Yin S (2018) Fault-tolerant control of time-delay Markov jump systems with It\({\hat{{\rm o}}} \) stochastic process and output disturbance based on sliding mode observer. IEEE Trans Ind Inform 14(12):5299–5307

    Article  Google Scholar 

  • Yang HY, Jiang YC, Yin S (2021) Adaptive fuzzy fault-tolerant control for Markov jump systems with additive and multiplicative actuator faults. IEEE Trans Fuzzy Syst 29(4):772–785

    Article  Google Scholar 

  • Yin S, Yang HY, Kaynak O (2017) Sliding mode observer based FTC for Markovian jump systems with actuator and sensor faults. IEEE Trans Autom Control 62(7):3351–3358

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang JH, Shi P, Xia YQ (2010) Robust adaptive sliding mode control for fuzzy systems with mismatched uncertainties. IEEE Trans Fuzzy Syst 18(4):700–711

    Article  Google Scholar 

  • Zhang QL, Li RC, Ren JC (2018) Robust adaptive sliding mode observer design for T–S fuzzy descriptor systems with time-varying delay. IEEE Access 6:46002–46018

    Article  Google Scholar 

  • Zhang XF, Huang WK, Wang QG (2021) Robust \(H_\infty \) adaptive sliding mode fault tolerant control for T–S fuzzy fractional order systems with mismatched disturbances. IEEE Trans Circuits Syst I Regul Pap 68(3):1297–1307

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyun Wang.

Additional information

Communicated by Leonardo Tomazeli Duarte.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D. Sliding mode fault-tolerant control for T–S fuzzy system: a singular system approach. Comp. Appl. Math. 41, 418 (2022). https://doi.org/10.1007/s40314-022-02126-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-022-02126-4

Keywords

Mathematics Subject Classification