Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hermitian hull of constacyclic codes over a class of non-chain rings and new quantum codes

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Let p be a prime number and \(q=p^m\) for some positive integer m. In this paper, we find the possible Hermitian hull dimensions of \(\lambda \)-constacyclic codes over \(R_e={\mathbb {F}}_{q^2}+u{\mathbb {F}}_{q^2} +u^2{\mathbb {F}}_{q^2}+\cdots +u^{e-1}{\mathbb {F}}_{q^2}\), \(u^e=1\) where \({\mathbb {F}}_{q^2}\) is the finite field of \(q^2\) elements, \(e|(q+1)\) and \(\lambda =\eta _1\alpha _1+\eta _2\alpha _2+\cdots +\eta _e\alpha _e\) for \(\alpha _l \in {\mathbb {F}}_{q^2}^{*}\) of order \(r_l\) such that \(r_l\mid q+1\) (for each \(1\le l \le e\)). Further, we obtain some conditions for these codes to be Hermitian LCD. Also, under certain conditions, we establish a strong result that converts every constacyclic code to a Hermitian LCD code (Corollaries 2 and 3). We also study the structure of generator polynomials for Hermitian dual-containing constacyclic codes (Theorems 8 and 9), and obtain parameters of quantum codes using the Hermitian construction. The approach we used to derive Hermitian dual-containing conditions via the hull has not been used earlier. As an application, we obtain several optimal and near-to-optimal LCD codes, constacyclic codes having small hull dimensions, and quantum codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The authors declare that [the/all other] data supporting the findings of this study are available within the article. Any clarification may be requested from the corresponding author, provided it is essential.

References

  • Abualrub T, Siap I (2006) On the construction of cyclic codes over the ring \({\mathbb{Z}}_2+u{\mathbb{Z}}_2\). In: Proc. \(9^{th}\) WSEAS Internat. Conf. Appl. Math., Istanbul, Turkey, pp. 430-435

  • Abualrub T, Siap I (2007) Cyclic codes over the ring \({\mathbb{Z} }_2+u{\mathbb{Z} }_2\) and \({\mathbb{Z} }_2+u{\mathbb{Z} }_2+u^2{\mathbb{Z} }_2\). Des Codes Cryptogr 42:273–287

    MathSciNet  Google Scholar 

  • Alahmadi A, Altassan A, AlKenani A, Çalkavur S, Shoaib H, Solé P (2020) A Multisecret-sharing scheme based on LCD codes. Mathematics 8(2):272–282

    Google Scholar 

  • Assmus EF Jr, Key JD (1990) Affine and projective planes. Discrete Math 83(2–3):161–187

    MathSciNet  Google Scholar 

  • Aydin N, Liu P, Yoshino B (2021) http://quantumcodes.info/Z4/. Accessed on 15/5/23

  • Ball S (2021) Some constructions of quantum MDS codes. Des Codes Cryptogr 89:811–821

    MathSciNet  Google Scholar 

  • Bosma W, Cannon J (1995) Handbook of magma functions. University of Sydney, Sydney

    Google Scholar 

  • Calderbank AR, Rains EM, Shor PM, Sloane NJA (1998) Quantum error-correction via codes over \(GF(4)\). IEEE Trans Inform Theory 44:1369–1387

    MathSciNet  Google Scholar 

  • Cao M, Cui J (2020) Construction of new quantum codes via Hermitian dual-containing matrix-product codes. Quantum Inf Process 19(12):1–26

    MathSciNet  Google Scholar 

  • Carlet C, Guilley S (2016) Complementary dual codes for counter-measures to side-channel attacks. Adv Math Commun 10(1):131–150

    MathSciNet  Google Scholar 

  • Carlet C, Mesnager S, Tang C, Qi Y, Pellikaan R (2018) Linear codes over \(\mathbb{F} _q \) are equivalent to LCD codes for \( q> 3\). IEEE Trans Inform Theory 64(4):3010–3017

    MathSciNet  Google Scholar 

  • Carlet C, Li CJ, Mesnager S (2019) Linear codes with small hulls in semi-primitive case. Des Codes Cryptogr 87:3063–3075

    MathSciNet  Google Scholar 

  • Debnath I, Prakash O, Islam H (2023) Galois hulls of constacyclic codes over finite fields. Cryptogr Commun 15(1):111–127

  • Edel, Y.: Some good quantum twisted codes. www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html

  • Grassl M, Rötteler M (2015) Quantum MDS codes over small fields. In: IEEE International Symposium on Information Theory (ISIT). Hong Kong, China, pp. 1104–1108. https://doi.org/10.1109/ISIT.2015.7282626

  • Guenda K, Jitman S, Gulliver TA (2018) Constructions of good entanglement-assisted quantum error correcting codes. Des Codes Cryptogr 86(1):121–136

    MathSciNet  Google Scholar 

  • Hammons AR, Kumar PV, Calderbank AR, Sloane NJA, Solé P (1994) The \({\mathbb{Z} }_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans Inform Theory 40:301–319

    MathSciNet  Google Scholar 

  • Islam H, Prakash O (2021) New quantum and LCD codes over finite fields of even characteristic. Defence Sci J 75(05):656–661

    Google Scholar 

  • Islam H, Prakash O (2022) Construction of LCD and new quantum codes from cyclic codes over a finite non-chain ring. Cryptogr Commun 14(1):59–73

    MathSciNet  Google Scholar 

  • Islam H, Martínez-Moro E, Prakash O (2021) Cyclic codes over a non-chain ring \(R_{e, q}\) and their application to LCD codes. Discrete Math 344(10):112545

    Google Scholar 

  • Islam H, Prakash O, Verma RK (2022) New quantum codes from constacyclic codes over the ring \(R_{k, m}\). Adv Math Commun 16(1):17–35

    MathSciNet  Google Scholar 

  • Jitman S, Sangwisut E (2016) The average dimension of the Hermitian hull of cyclic codes over finite fields of square order. In: AIP Proceedings of ICoMEIA 2016, 1775 Article ID 030026

  • Jitman S, Sangwisut E (2018) The average dimension of the Hermitian Hull of Constacyclic Codes over finite fields of square order. Adv Math Commun 12(3):451–463

    MathSciNet  Google Scholar 

  • Jitman S, Sangwisut E (2020) Hulls of cyclic codes over the ring \({\mathbb{F} }_2+v{\mathbb{F} }_2\). Thai J Math 33:135–144

    Google Scholar 

  • Jitman S, Sangwisut E, Udomkavanich P (2020) Hulls of cyclic codes over \({\mathbb{Z} }_4\). Disc Math 343(1):111621

    Google Scholar 

  • Ketkar A, Klappenecker A, Kumar S, Sarvepalli PK (2006) Nonbinary stabilizer codes over finite fields. IEEE Trans Inform Theory 52(11):4892–4914

    MathSciNet  Google Scholar 

  • Leon JS (1982) Computing automorphism groups of error-correcting codes. IEEE Trans Inform Theory 28:496–511

    MathSciNet  Google Scholar 

  • Li C (2018) Hermitian LCD codes from cyclic codes. Des Codes Cryptogr 86:2261–2278

    MathSciNet  Google Scholar 

  • Li CJ, Zeng P (2019) Constrctions of linear codes with one-dimensional hull. IEEE Trans Inform Theory 65(3):1668–1676

    MathSciNet  Google Scholar 

  • Liu X, Liu H (2015) LCD codes over finite chain rings. Finite Fields Appl 34:1–19

    MathSciNet  Google Scholar 

  • Liu Z, Wang J (2019) Linear complementary dual codes over rings. Des Codes Cryptogr 87:3077–3086

    MathSciNet  Google Scholar 

  • Mankean T, Jitman S (2020) Optimal binary and ternary linear codes with hull dimension one. J Appl Math Comput 64(1):137–155

    MathSciNet  Google Scholar 

  • Mankean T, Jitman S (2021) Constructions and bounds on quaternary linear codes with Hermitian hull dimension one. Arab J Math 10(1):175–184

    MathSciNet  Google Scholar 

  • Massey JL (1992) Linear codes with complementary duals. Disc Math 106(107):337–342

    MathSciNet  Google Scholar 

  • Pang B, Zhu S, Kai X (2020) Some new bounds on LCD codes over finite fields. Cryptogr Commun 12(4):743–755

    MathSciNet  Google Scholar 

  • Ping L, Shixin Z (2008) Cyclic codes of arbitrary lengths over the ring \({\mathbb{F} }_q +u {\mathbb{F} }_q\). J Univ Sci Technol China 38(12):1392–1396

    MathSciNet  Google Scholar 

  • Prakash O, Yadav S, Verma RK (2020) Constacyclic and linear complementary dual codes over \({\mathbb{F} }_q+u{\mathbb{F} }_q\). Defence Sci J 70(6):626–632

    Google Scholar 

  • Prakash O, Yadav S, Islam H, Solé P (2022) Self-dual and LCD double circulant codes over a class of non-local rings. Comput Appl Math 41(6):1–16

    MathSciNet  Google Scholar 

  • Sangwisut E, Jitman S, Ling S, Udomkavanich P (2015) Hulls of cyclic and negacyclic codes over finite fields. Finite Fields Appl 33:232–257

    MathSciNet  Google Scholar 

  • Sangwisut E, Jitman S, Udomkavanich P (2017) Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Adv Math Commun 11:595–613

    MathSciNet  Google Scholar 

  • Sendrier N (1997) On the dimension of the hull. SIAM J Appl Math 10:282–293

    MathSciNet  Google Scholar 

  • Sendrier N (2000) Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Trans Inform Theory 46:1193–1203

    MathSciNet  Google Scholar 

  • Sendrier N (2004) Linear codes with complementary duals meet the Gilbert-Varshamov bound. Disc Math 285:345–347

    MathSciNet  Google Scholar 

  • Sendrier N, Skersys G (2001) On the computation of the automorphism group of a linear code. In: Proceedings of IEEE ISIT 2001, Washington, DC, pp. 13

  • Shi X, Huang X, Yue Q (2021) Construction of new quantum codes derived from constacyclic codes over \({\mathbb{F} }_{q^2}+ u {\mathbb{F} }_{q^2}+\cdots + u^{r-1}{\mathbb{F} }_{q^2}\). Appl Algebra Engrg Comm Comput 32(5):603–620

    MathSciNet  Google Scholar 

  • Shor P (1995) Scheme for reducing decoherence in quantum computer memory. Phys Rev A 52(4):2493–2496

    Google Scholar 

  • Skersys G (2003) The average dimension of the hull of cyclic codes. Disc Appl Math 128(1):275–292

    MathSciNet  Google Scholar 

  • Sok L, Shi M, Solé P (2018) Constructions of optimal LCD codes over large finite fields. Finite Fields Their Appl 50:138–153

    MathSciNet  Google Scholar 

  • Yadav S, Prakash O (2023) A new construction of Quadratic Double Circulant LCD codes. J Algebra Comb Disc Struct Appl 10(3):119–129

  • Yadav S, Prakash O (2023) Enumeration of LCD and Self-dual Double Circulant Codes Over \({\mathbb{F} }_q [v]/<v^2- 1>\). In: Proceedings of Seventh International Congress on Information and Communication Technology, Lecture Notes in Networks and Systems 447:241–249. https://doi.org/10.1007/978-981-19-1607-6_21

  • Yadav S, Prakash O, Islam H, Solé P (2021) Self-dual and LCD double circulant and double negacirculant codes over \({\mathbb{F} }_q+u {\mathbb{F} }_q+v {\mathbb{F} }_q\). J Appl Math Comput 67(1–2):689–705

    MathSciNet  Google Scholar 

  • Yang Y, Cai W (2015) On self-dual constacyclic codes over finite fields. Des Codes Cryptogr 74:355–364

    MathSciNet  Google Scholar 

  • Yang X, Massey JL (1994) The condition for a cyclic code to have a complementary dual. Discrete Math 126:391–393

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Science and Technology (DST) (under SERB File Number: MTR/2022/001052, vide Diary No./Finance No. SERB/F/8787/2022-2023 dated 29 December 2022) for financial support and the Indian Institute of Technology Patna for providing research facilities. The authors would also like to thank the Handling Editor and anonymous referee(s) for their careful reading and providing their constructive suggestions to improve the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Prakash.

Ethics declarations

Conflict of interest

The authors declare that there is no Conflict of interest regarding the publication of this manuscript.

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Singh, A., Islam, H. et al. Hermitian hull of constacyclic codes over a class of non-chain rings and new quantum codes. Comp. Appl. Math. 43, 269 (2024). https://doi.org/10.1007/s40314-024-02789-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-02789-1

Keywords

Mathematics Subject Classification