Abstract
New algorithms are presented for numerical conformal mapping based on rational approximations and the solution of Dirichlet problems by least-squares fitting on the boundary. The methods are targeted at regions with corners, where the Dirichlet problem is solved by the “lightning Laplace solver” with poles exponentially clustered near each singularity. For polygons and circular polygons, further simplifications are possible.
Similar content being viewed by others
Notes
Gaier: “Since the configuration of the maximal system of points on the boundary is unknown (except for circles and ellipses), this method is mainly of theoretical interest.” Curtis: “The success of this method is highly sensitive to the correct placement of the points.” Collatz: “The choice of collocation points is a matter of some uncertainty.”
References
Adcock, B., Huybrechs, D.: Frames and numerical approximation. SIAM Rev. 61, 443–473 (2019)
Amano, K.: A charge simulation method for the numerical conformal mapping of interior, exterior and doubly-connected domains. J. Comput. Appl. Math. 53, 353–370 (1994)
Amano, K., Okano, D., Ogata, H., Sugihara, M.: Numerical conformal mappings onto the linear slit domain. Jpn. J. Ind. Appl. Math. 29, 165–186 (2012)
Axler, S.: Harmonic functions from a complex anlaysis viewpoint. Am. Math. Mon. 39, 246–258 (1986)
Badreddine, M., DeLillo, T.K., Sahraei, S.: A comparison of some numerical conformal mapping methods for simply and multiply connected domains. Discret. Contin. Dyn. Syst. Ser. B 24, 55–82 (2019)
Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227, 7003–7026 (2008)
Beckermann, B., Townsend, A.: Bounds on the sngular valuces of matrices with displacement structure. SIAM Rev. 61, 319–344 (2019)
Bishop, C.J.: Conformal welding and Koebe’s theorem. Ann. Math. 166, 613–656 (2007)
Bjørstad, P., Grosse, E.: Conformal mapping of cirulcar arc polygons. SIAM J. Sci. Comput. 8, 19–32 (1987)
Brubeck, P.D., Nakatsukasa, Y., Trefethen, L.N.: Vandermonde with Arnoldi (2019). arXiv:1911.09988 (submitted to SIAM Review)
Collatz, L.: The numerical treatment of differential equations, 3rd edn. Springer, New York (1960)
Computational Methods and Function Theory, special issue on numerical conformal mapping, vol. 11, no. 2, pp. 375–787 (2012)
Crowdy, D.: The Schwarz-Christoffel mapping to bounded multiply connected polygonal domains. Proc. R. Soc. A 461, 2653–2678 (2005)
Curtiss, J.H.: Solutions of the Dirichlet problem in the plane by approximation with Faber polynomials. SIAM J. Numer. Anal. 3, 204–228 (1966)
Däppen, H.D.: Die Schwarz-Christoffel-Abbildung für zweifach zusammenhängende Gebiete mit Anwendungen. Diss, ETH Zurich (1988)
DeLillo, T.K., Elcrat, A.R., Kropf, E.H., Pfaltzgraff, J.A.: Efficient calculation of Schwarz-Christoffel transformations for multiply connected domains using Laurent series. Comput. Methods Funct. Theory 13, 307–336 (2013)
DeLillo, T.K., Elcrat, A.R., Pfaltzgraff, J.A.: Schwarz-Christoffel mapping of multiply connected domains. J. Anal. Math. 94, 17–47 (2004)
Driscoll, T.A.: Algorithm 756: A MATLAB toolbox for Schwarz–Christoffel mapping. ACM Trans. Math. Softw., vol. 22, pp. 168–186 (1996) (see also www.math.udel.edu/~driscoll/SC/)
Driscoll, T.A., Hale, N., Trefethen, L.N. (eds.): Chebfun User’s Guide. Pafnuty Publications, Oxford (2014). www.chebfun.org
Driscoll, T.A., Trefethen, L.N.: Schwarz-Christoffel Mapping. Cambridge University Press, Cambridge (2002)
Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)
Gaier, D.: Konstruktive Methoden der konformen Abbildung. Springer, New York (1964)
Gaier, D.: Lectures on complex approximation. Birkhäuser, Basel (1987)
Gopal, A., Trefethen, L.N.: Representation of conformal maps by rational functions. Numer. Math. 142, 359–382 (2019)
Gopal, A., Trefethen, L.N.: Solving Laplace problems with corner singularities via rational functions. SIAM J. Numer. Anal. 57, 2074–2094 (2019)
Henrici, P.: Applied and Computational Complex Analysis. Wiley, New York (1974)
Howell, L.H.: Numerical conformal mapping of circular arc polygons. J. Comput. Appl. Math. 46, 7–28 (1993)
Hu, C.: Algorithm 785: A software package for computing Schwarz-Christoffel conformal transformation for doubly connected polygonal regions. ACM Trans. Math. Softw. 24, 317–333 (1998)
Kerzman, N., Stein, E.M.: The Cauchy kernel, the Szegő kernel, and the Riemann mapping function. Math. Ann. 236(10978), 85–93 (1978)
Kerzman, N., Trummer, M.R.: Numerical conformal mapping via the Szegő kernel. J. Comput. Appl. Math. 14, 111–123 (1986)
Lehman, R.S.: Development of the mapping function at an analytic corner. Pac. J. Math. 7, 1437–1449 (1957)
Lehman, R.S.: Developments at an analytic corner of solutions of elliptic partial differential equations. J. Math. Mech. 8, 727–760 (1959)
Nakatsukasa, Y., Sète, O., Trefethen, L.N.: The AAA algorithm for rational approximation. SIAM J. Sci. Comput. 40, A1494–A1522 (2018)
Nakatsukasa, Y., Trefethen, L.N.: An algorithm for real and complex rational minimax approximation. SIAM J. Sci. Comput. (2019) (submitted)
Nasser, M.M.S.: PlgCirMap: A MATLAB toolbox for computing the conformal mapping from polygonal multiply connected domains onto circular domains SoftwareX,11, 100464 (2020).
Newman, D.J.: Rational approximation to \(|x|\). Mich. Math. J. 11, 11–14 (1964)
Schiffer, M.: Some recent developments in the theory of conformal mapping, appendix to R. Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces, Interscience, Courant (1950)
Stahl, H.: Spurious poles in Padé approximation. J. Comput. Appl. Math. 99, 511–527 (1998)
Townsend, A., Wilber, H.: On the singular values of matrices with large displacement rank. Linear Algebra Appl. 548, 19–41 (2018)
Trefethen, L.N. (ed.): Numerical conformal mapping. North-Holland (1986)
Trefethen, L.N.: Series solution of Laplace problems. ANZIAM J. 60, 1–26 (2018)
Trefethen, L.N.: Conformal mapping of L-shaped regions. (2019). Chebfun example at www.chebfun.org(October 2019)
Trefethen, L.N.: Lightning Laplace and conformal mapping codes laplace.m and confmap.m, people.maths.ox.ac.uk/trefethen/laplace (2019)
Walsh, J.L.: Interpolation and approximation by rational functions in the complex domain. American Mathematical Society, RI (1935)
Wegmann, R.: Methods for numerical conformal mapping. In: Kühnau, R. (ed.) Handbook of complex analysis: geometric function theory, vol. 2, pp. 351–477. Elsevier, Amsterdam (2020)
Acknowledgements
I have benefited from helpful comments of Toby Driscoll, Abi Gopal, and Yuji Nakatsukasa.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by In Memoriam Stephan Ruscheweyh 1944–2019. Elias Wegert.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Trefethen, L.N. Numerical Conformal Mapping with Rational Functions. Comput. Methods Funct. Theory 20, 369–387 (2020). https://doi.org/10.1007/s40315-020-00325-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40315-020-00325-w
Keywords
- Conformal mapping
- Schwarz–Christoffel formula
- Rational approximation
- AAA approximation
- Lightning Laplace solver
- circular polygon