Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive Fuzzy Control for Nonlinear Pure-feedback Systems with External Disturbance and Unknown Dead Zone Output

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

By using the adaptive backstepping technique, a novel adaptive fuzzy backstepping control scheme is proposed for the nonlinear pure-feedback systems with external disturbance and unknown dead zone output in this paper. The proposed control scheme not only guarantees that all the signals in the closed-loop system are semi-globally bounded, but also makes the tracking error converge to a small neighborhood of the origin by suitable choice of design parameters. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions. The primary characteristic of this thesis is that the unknown dead zone output nonlinearity and external disturbance of pure-feedback systems is introduced. Finally, an instance is used to prove the superiority of scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kosko, B.: Fuzzy systems as universal approximators. IEEE Trans. Comput. 43, 1329–1333 (1994)

    Article  MATH  Google Scholar 

  2. Wang, L.X.: Stable adaptive fuzzy control of nonlinear systems. IEEE Trans. Fuzzy Syst. 1, 146–155 (1993)

    Article  Google Scholar 

  3. Chen, B., Liu, X.P., Lin, C., Ge, S.S.: Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach. IEEE Trans. Fuzzy Syst. 20, 1012–1020 (2012)

    Article  Google Scholar 

  4. Zhou, Q., Shi, P., Tian, Y., Wang, M.Y.: Approximation-based adaptive tracking control for MIMO nonlinear systems with input saturation. IEEE Trans. Cybern. 45, 2119–2128 (2015)

    Article  Google Scholar 

  5. Wang, H.Q., Chen, B., Lin, C.: Direct adaptive neural control for strict feedback stochastic nonlinear systems. Nonlinear Dyn. 67, 2703–2718 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wu, L.B., Yang, G.H.: Adaptive fuzzy tracking control for a class of uncertain nonaffine nonlinear systems with dead-zone inputs. Fuzzy Sets Syst. 290, 1–21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tong, S.C., Li, C.Y., Li, Y.M.: Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy Sets Syst. 160, 2755–2775 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhou, W.D., Liao, C.Y., Zheng, L., Liu, M.M.: Adaptive fuzzy output feedback control for a class of nonaffine nonlinear systems with unknown dead-zone input. Nonlinear Dyn. 79, 2609–2621 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shi, W.X.: Adaptive fuzzy control for multi-input multi-output nonlinear systems with unknown dead-zone inputs. Appl. Soft Comput. J. 30, 36–47 (2015)

    Article  Google Scholar 

  10. Tong, S., Li, Y.: Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 20, 168–180 (2012)

    Article  Google Scholar 

  11. Wang, H.Q., Liu, X.Q., Liu, P.X.Q., Li, S.: Robust adaptive fuzzy fault-tolerant control for a class of non-lower-triangular nonlinear systems with actuator failures. Inf. Sci. 336, 60–74 (2016)

    Article  Google Scholar 

  12. Chen, W.S., Zhang, Z.Q.: Globally stable adaptive backstepping fuzzy control for output-feedback systems with unknown high-frequency gain sign. Fuzzy Sets Syst. 161, 821–836 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, F., Liu, Z., Zhang, Y., Philip, C.L.: Adaptive quantized controller design via backstepping andstochastic small-gain spproach. IEEE Trans. Fuzzy Syst. 24, 330–343 (2016)

    Article  Google Scholar 

  14. Lai, G.Y., Liu, Z., Zhang, Y., Chen, P.: Asymmetric actuator backlash compensation in quantized adaptive control of uncertain networked nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–14 (2015)

    Google Scholar 

  15. Ku, R.T., Athans, M.: Further results on the uncertainty threshold principle. IEEE Trans. Autom. Control 22, 866–868 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tao, G., Kokotovic, P.V.: Adaptive control of plants with unknown dead-zones. IEEE Trans. Autom. Control 39, 59–68 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhou, J., Wen, C., Zhang, Y.: Adaptive output control of nonlinear systems with uncertain dead zone nonlinearity. IEEE Trans. Autom. Control 51, 504–511 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Alonso-Quesada, S., DelaSen, M., Bilbao-Guillerna, A., Ibeas, A.: A semiempirical reduced-order identification modeling tool for partially unknown discrete-time plants by using a multi-estimation scheme. Instrum Sci. Technol. 35, 419–436 (2007)

    Article  Google Scholar 

  19. Wang, F., Liu, Z., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive fuzzy dynamic surface control for a class of nonlinear systems with fuzzy dead zone and dynamic uncertainties. Nonlinear Dyn. 79, 1693C1709 (2015)

    MATH  Google Scholar 

  20. Wang, X.J., Wang, S.P.: Adaptive fuzzy robust control of PMSM with smooth inverse based dead zone compensation. Int. J. Control Autom. Syst. 14, 378–388 (2016)

    Article  Google Scholar 

  21. Liu, Z., Wang, F., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive tracking control for a class of nonlinear systems with a fuzzy dead-zone input. IEEE Trans. Fuzzy Syst. 23, 193–203 (2015)

    Article  Google Scholar 

  22. Yoo, S.J.: Decentralised fault compensation of time-delayed interactions and dead-zone actuators for a class of large-scale non-linear systems. IET Control Theory Appl. 9, 1461–1471 (2015)

    Article  MathSciNet  Google Scholar 

  23. Wang, H.Q., Liu, X.Q., Liu, K.F.: Robust adaptive neural tracking control for a class of stochastic nonlinear interconnected systems. IEEE Trans. Neural Netw. Learn. Syst. 27, 510–523 (2016)

    Article  MathSciNet  Google Scholar 

  24. Li, D.J.: Adaptive neural network control for unified chaotic systems with dead-zone input. J. Vib. Control 21, 2446–2451 (2015)

    Article  MathSciNet  Google Scholar 

  25. Zhang, Z.Q., Xu, S.Y., Zhang, B.Y.: Exact tracking control of nonlinear systems with time delays and dead-zone input. Automatica 52, 272–276 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, B., Mao, Z.Z.: Adaptive control of stochastic Hammerstein systems with dead-zone input nonlinearity. Trans. Inst. Meas. Control 37, 746–759 (2015)

    Article  Google Scholar 

  27. Wigren, Torbjorn, Nordsjo, Anders E.: Compensation of the RLS algorithm for output nonlinearities. IEEE Trans. Autom. Control 44, 1913–1918 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, Z., Lai, G.Y., Zhang, Y., Chen, P.C.L.: Adaptive fuzzy tracking control of nonlinear time-delay systems with dead zone output mechanism based on a novel smooth model. IEEE Trans. Fuzzy Syst. 10, 1–13 (2015)

    Article  Google Scholar 

  29. Wang, F., Liu, Z., Lai, G.Y.: Fuzzy adaptive control of nonlinear uncertain plants with unknown dead zone output. Fuzzy Sets Syst. 263, 27–48 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nussbaum, Roger D.: Some remarks on adaptive control a conjecture in parameter. Syst. Control Lett. 3, 243–246 (1983)

    Article  MATH  Google Scholar 

  31. Ge, S.C., Hong, F., Lee, T.H.: Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34, 499–517 (2004)

    Article  Google Scholar 

  32. Zhang, T.P., Wen, H., Zhu, Q.: Adaptive fuzzy control of nonlinear systems in pure feedback form based on input-to-state stability. IEEE Trans. Fuzzy Syst. 18, 80–93 (2010)

    Article  Google Scholar 

  33. Li, Y.M., Tong, S.C., Li, T.S.: Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems. IEEE Trans. Cybern. 45, 138–149 (2015)

    Article  Google Scholar 

  34. Zou, A.M., Hou, Z.G., Tan, M.: Adaptive control of a class of nonlinear pure-feedback systems using fuzzy backstepping approach. IEEE Trans. Fuzzy Syst. 16, 886–897 (2008)

    Article  Google Scholar 

  35. Wang, F., Liu, Z., Zhang, Y., Chen, P.C.L.: Adaptive fuzzy control for a class of stochastic pure-feedback nonlinear systems with unknown hysteresis. IEEE Trans. Fuzzy Syst. 10, 1–12 (2015)

    Google Scholar 

  36. Li, Y.M., Tong, S.C.: Adaptive fuzzy output-feedback control of pure-feedback uncertain nonlinear systems with unknown dead-zone. IEEE Trans. Fuzzy Syst. 22, 1341–1347 (2014)

    Article  Google Scholar 

  37. Li, Y.M., Tong, S.C., Li, T.S.: Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones. IEEE Trans. Fuzzy Syst. 23, 1228–1241 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to editor and anonymous reviewers for their helpful comments and suggestions on the paper. This work is supported by NSF of China (Grant Nos. 61170054, and 61402265), Supported by SDUST Excellent Teaching Team Construction Plan (Grant No. JXTD20160507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xikui Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

This work is supported by NSF of China (61170054, 61402265).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Liu, X. & Li, Y. Adaptive Fuzzy Control for Nonlinear Pure-feedback Systems with External Disturbance and Unknown Dead Zone Output. Int. J. Fuzzy Syst. 19, 1940–1949 (2017). https://doi.org/10.1007/s40815-016-0276-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0276-8

Keywords