Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Design of Fuzzy and Linear Active Disturbance Rejection Control for Insulin Infusion in Type 1 Diabetic Patients

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Despite previously proposed process control methods for sugar control in type 1 diabetes patients, precise control remains an unsolved problem. The imbalance of insulin in the human body might lead to serious consequences such as kidney failure, heart failure and even death. Using the combination of fuzzy and linear active disturbance rejection control, this study aims at maintaining blood sugar level by controlling the insulin dose injected into the human body. In MATLAB/Simulink environment, simulation is built with the mathematical model of an artificial pancreas. Besides less dependence on the information of control target, the presented method shows significantly smooth blood glucose concentration when compared to a genetic algorithm–fuzzy–proportional integral controller. In addition to being without outside effects, the proposed method exposes its abilities in cases of having difference disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Brownlee, M.: Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865), 813–820 (2001)

    Article  Google Scholar 

  2. Rewers, A., Dong, F., Slover, R.H., Klingensmith, G.J., Rewers, M.: Incidence of diabetic ketoacidosis at diagnosis of type 1 diabetes in Colorado youth, 1998–2012. JAMA 313(15), 1570–1572 (2015)

    Article  Google Scholar 

  3. Lee, S.: So much insulin, so much hypoglycemia. JAMA Intern. Med. 141(4), 520–529 (2008)

    Google Scholar 

  4. Cobelli, C., Renard, E., Kovatchev, B.: Artificial pancreas: past, present, future. Diabetes 60(11), 2672–2682 (2011)

    Article  Google Scholar 

  5. Femat, R., Ruiz-Velázquez, E., Quiroz, G.: Weighting restriction for intravenous insulin delivery on T1DM patient via control. IEEE Trans. Autom. Sci. Eng. 6(2), 239–247 (2009)

    Article  Google Scholar 

  6. Bergman, R.N., Prager, R., Volund, A., Olefsky, J.M.: Equivalence of the insulin sensitivity index in man derived by the minimal model method and the euglycemic glucose clamp. J. Clin. Invest. 79(3), 790 (1987)

    Article  Google Scholar 

  7. Fisher, M.E.: A semiclosed-loop algorithm for the control of blood glucose levels in diabetics. IEEE Trans. Biomed. Eng. 38(1), 57–61 (1991)

    Article  Google Scholar 

  8. Chee, F., Savkin, A.V., Fernando, T.L., Nahavandi, S.: Optimal H insulin injection control for blood glucose regulation in diabetic patients. IEEE Trans. Biomed. Eng. 52(10), 1625–1631 (2005)

    Article  Google Scholar 

  9. Patek, S.D., Magni, L., Dassau, E., Hughes-Karvetski, C., Toffanin, C., De Nicolao, G., Del Favero, S., Breton, M., Man, C.D., Renard, E., Zisser, H., Doyle, F.J., Cobelli, C., Kovatchev, B.P.: Modular closed-loop control of diabetes. IEEE Trans. Biomed. Eng. 59(11 PART1), 2986–2999 (2012)

    Article  Google Scholar 

  10. Srinivasan, K., Vinod Reddy, T.: Design of multi-model-based controller design and implementation using microcontroller for blood glucose regulation of Type 1 diabetic system. Int. J. Biomed. Eng. Technol. 5(4), 343–359 (2011)

    Article  Google Scholar 

  11. Haque, S., Paul, P.S., Ahmed, M.S., Zaman, M.A.U., Mannan, M.A.: Performance studies of different closed loop glucose controllers for treating type 1 diabetes mellitus. In: 2015 International Conference on Advances in Electrical Engineering (ICAEE), pp. 145–148 (2015)

  12. Goharimanesh, M., Lashkaripour, A., Shariatnia, S., Akbari, A.: Diabetic control using genetic fuzzy-PI controller. Int. J. Fuzzy Syst. 16(2), 133–139 (2014)

    MathSciNet  Google Scholar 

  13. Cobelli, C., Dalla Man, C., Sparacino, G., Magni, L., De Nicolao, G., Kovatchev, B.P.: Diabetes: models, signals, and control. IEEE Rev. Biomed. Eng. 2, 54–96 (2009)

    Article  Google Scholar 

  14. Atkinson, M.A., Eisenbarth, G.S., Michels, A.W.: Type 1 diabetes. Lancet 383(9911), 69–82 (2014)

    Article  Google Scholar 

  15. Vinod Reddy, T., Srinivasan, K.: Multi model based controller design for type 1 diabetic patients. In: ARTCom 2009—International Conference on Advances in Recent Technologies in Communication and Computing, pp. 714–718 (2009)

  16. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  17. Tang, H., Li, Y.: Development and active disturbance rejection control of a compliant micro-/nanopositioning piezostage with dual mode. IEEE Trans. Ind. Electron. 61(3), 1475–1492 (2014)

    Article  Google Scholar 

  18. Parvathy, R., Daniel, A.E.: A survey on active disturbance rejection control. In: 2013 International Multi-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), pp. 330–335 (2013)

  19. Mado, R., Herman, P.: Survey on methods of increasing the efficiency of extended state disturbance observers. ISA Trans. 56, 18–27 (2015)

    Article  Google Scholar 

  20. Merig, J.M., Gil-Lafuente, A.M., Yager, R.R.: An overview of fuzzy research with bibliometric indicators. Appl. Soft Comput. J. 27, 420–433 (2015)

    Article  Google Scholar 

  21. Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy Control. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  22. Wai, R.-J., Chen, M.-W., Liu, Y.-K.: Design of adaptive control and fuzzy neural network control for single-stage boost inverter. IEEE Trans. Ind. Electron. 62(9), 5434–5445 (2015)

    Article  Google Scholar 

  23. Wang, S.C., Liu, Y.H.: A PSO-based fuzzy-controlled searching for the optimal charge pattern of Li-ion batteries. IEEE Trans. Ind. Electron. 62(5), 2983–2993 (2015)

    Article  Google Scholar 

  24. Kwiatkowska, M., Kielan, K.: Fuzzy logic and semiotic methods in modeling of medical concepts. Fuzzy Sets Syst. 214, 35–50 (2013)

    Article  MathSciNet  Google Scholar 

  25. Stewart, J.E., Timmer, L.W., Lawrence, C.B., Pryor, B.M., Peever, T.L.: Discord between morphological and phylogenetic species boundaries: incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen. BMC Evol. Biol. 14(1), 1–14 (2014)

    Article  Google Scholar 

  26. Herbst, G.: A Simulative study on active disturbance rejection control (ADRC) as a control tool for practitioners. Electronics 2(3), 246–279 (2013)

    Article  MathSciNet  Google Scholar 

  27. Sriram, R., Srinivasan, K., Reddy, T.V.: Internal model control design for blood glucose in diabetic patients. Int J Pharm Appl Sci 1(1), 48–51 (2010)

    Google Scholar 

  28. Bogardus, C., Ravussin, E., Robbins, D.C., Wolfe, R.R., Horton, E.S., Sims, E.A.H.: Effects of physical training and diet therapy on carbohydrate metabolism in patients with glucose intolerance and non-insulin-dependent diabetes mellitus. Diabetes 33(4), 311–318 (1984)

    Article  Google Scholar 

  29. Ceriello, A., Novials, A., Ortega, E., Pujadas, G., La Sala, L., Testa, R., Bonfigli, A.R., Genovese, S.: Hyperglycemia following recovery from hypoglycemia worsens endothelial damage and thrombosis activation in type 1 diabetes and in healthy controls. Nutr. Metab. Cardiovasc. Dis. 24(2), 116–123 (2014)

    Article  Google Scholar 

  30. Bell, K.J., Toschi, E., Steil, G.M., Wolpert, H.A.: Optimized mealtime insulin dosing for fat and protein in type 1 diabetes: application of a model-based approach to derive insulin doses for open-loop diabetes management. Diabetes Care 39(9), 1631–1634 (2016)

    Article  Google Scholar 

  31. Hirsch, I.B., Armstrong, D., Bergenstal, R.M., Buckingham, B., Childs, B.P., Clarke, W.L., Peters, A., Wolpert, H.: Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM). Diabetes Technol. Ther. 10(4), 232–246 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Te-Jen Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, TJ., Wang, SM., Tsai, J.SH. et al. Design of Fuzzy and Linear Active Disturbance Rejection Control for Insulin Infusion in Type 1 Diabetic Patients. Int. J. Fuzzy Syst. 19, 1966–1977 (2017). https://doi.org/10.1007/s40815-017-0318-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0318-x

Keywords