Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Load–Frequency Control Using Multi-objective Genetic Algorithm and Hybrid Sliding Mode Control-Based SMES

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper aims to better the dynamic response of interconnected power systems following any load change using the combination of multi-objective optimization algorithm-based PID and a hybrid adaptive fuzzy sliding mode. In the proposed method, a hybrid sliding surface including two subsystems’ information is introduced to produce a control effort to move both subsystems toward their related sliding surface. A feedback linearization control law is mimicked by an adaptive fuzzy controller. To compensate the error between the feedback linearization and adaptive fuzzy controller, a hitting controller is developed. The design of PID controller is formulated into a multi-objective optimization problem. The performance of suggested method is assessed on two interconnected power systems. These results validate that the suggested method confirms better disturbance rejection, keeps the control quality in different situations, reduces the frequency deviations preventing the overshoot and has more robustness to uncertainties and change in parameters in the power system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kundur, P.: Power System Stability and Control. McGraw-Hill, NY (1994)

    Google Scholar 

  2. Saadat, H.: Power System Analysis. McGraw-Hill, NY (1999)

    Google Scholar 

  3. Yousef, H.A., Khalfan, A.K., Albadi, M.H., Hosseinzadeh, N.: Load frequency control of a multi-area power system: an adaptive fuzzy logic approach. IEEE Trans. Power Syst. 29(4), 1822–1830 (2014)

    Article  Google Scholar 

  4. Chandrakala, K.V., Balamurugan, S., Sankaranarayanan, K.: Variable structure fuzzy gain scheduling based load frequency controller for multi source multi area hydro thermal system. Int. J. Electr. Power Energy Syst. 53, 375–381 (2013)

    Article  Google Scholar 

  5. Khooban, M.H., Niknam, T.: A new intelligent online fuzzy tuning approach for multi-area load frequency control: self adaptive modified bat algorithm. Int. J. Electr. Power Energy Syst. 71, 254–261 (2015)

    Article  Google Scholar 

  6. Tan, W.: Tuning of PID load frequency controller for power systems. Energy Convers. Manag. 50(6), 1465–1472 (2009)

    Article  Google Scholar 

  7. Anwar, M.N., Pan, S.: A new PID load frequency controller design method in frequency domain through direct synthesis approach. Int. J. Electr. Power Energy Syst. 67, 560–569 (2015)

    Article  Google Scholar 

  8. Moon, Y.H., Ryu, H.S., Lee, J.G., Song, K.B., Shin, M.C.: Extended integral control for load frequency control with the consideration of generation-rate constraints. Electr Power Energy Syst 24, 263–269 (2002)

    Article  Google Scholar 

  9. Sudha, K.R., Santhi, R.V.: Load frequency control of an interconnected reheat thermal system using type-2 fuzzy system including SMES units. Int. J. Electr. Power Energy Syst. 43(1), 1383–1392 (2012)

    Article  Google Scholar 

  10. Sahu, R.K., Panda, S., Yegireddy, N.K.: A novel hybrid DEPS optimized fuzzy PI/PID controller for load frequency control of multi-area interconnected power systems. J. Process Control 24(10), 1596–1608 (2014)

    Article  Google Scholar 

  11. Moon, Y.H., Ryu, H.S., Choi, B.K., Kook, H.J.: Improvement of system damping by using the differential feedback in the load frequency control. In: Proceedings of the IEEE PES 1999 Winter Meeting, pp. 683–688 (1999)

  12. Moon, Y.H., Ryu, H.S., Lee, J.G., Kim, S.: Power system load frequency control using noise-tolerable PID feedback. In: Proceedings IEEE International Symposium on Industrial Electronics (ISIE), vol. 3, pp. 1714–1718 (2001)

  13. Khodabakhshian, A., Golbon, N.: Unified PID design for load frequency control. In: Proceedings of 2004 IEEE International Conference on Control Applications (CCA). Taipei, Taiwan, pp. 1627–1632 (2004)

  14. Poulin, E., Pomerleau, A.: PID tuning for integrating and unstable processes. IEE Proc. Control Theory Appl. 143(5), 429–434 (1996)

    Article  MATH  Google Scholar 

  15. Poulin, E., Pomerleau, A.: Unified PID design method based on a maximum peak resonance specification. IEE Proc. Control Theory Appl. 146(6), 566–574 (1997)

    Article  MATH  Google Scholar 

  16. Khodabakhshian, A., Edrisi, M.: A new robust PID load frequency controller. Control Eng. Pract. 16, 1069–1080 (2008)

    Article  Google Scholar 

  17. Gozde, H., Taplamacioglu, M.C.: Automatic generation control application with craziness based particle swarm optimization in a thermal power system. Electr. Power Energy Syst. 33(1), 8–16 (2011)

    Article  Google Scholar 

  18. Bhatt, P., Roy, R., Ghoshal, S.P.: GA/particle swarm intelligence based optimization of two specific varieties of controller devices applied to two-area multi-units automatic generation control. Electr. Power Energy Syst. 32, 299–310 (2010)

    Article  Google Scholar 

  19. Daneshfar, F., Bevrani, H.: Load–frequency control: a GA-based multi-agent reinforcement learning. IET Gener. Transm. Distrib. 4(1), 13–26 (2010)

    Article  Google Scholar 

  20. Ali, E.S., Abd-Elazim, S.M.: Bacteria foraging optimization algorithm based load frequency controller for interconnected power system. Electr. Power Energy Syst. 33, 633–638 (2011)

    Article  Google Scholar 

  21. Farahani, M., Ganjefar, S., Alizadeh, M.: PID controller adjustment using chaotic optimisation algorithm for multi-area load frequency control. IET Control Theory Appl. 6(13), 1984–1992 (2012)

    Article  MathSciNet  Google Scholar 

  22. Farahani, M., Ganjefar, S.: Solving LFC problem in an interconnected power system using superconducting magnetic energy storage. Phys. C 487, 60–66 (2013)

    Article  Google Scholar 

  23. Abdelaziz, A.Y., Ali, E.S.: Cuckoo search algorithm based load frequency controller design for nonlinear interconnected power system. Int. J. Electr. Power Energy Syst. 73, 632–643 (2015)

    Article  Google Scholar 

  24. Shabani, H., Vahidi, B., Ebrahimpour, M.: A robust PID controller based on imperialist competitive algorithm for load-frequency control of power systems. ISA Trans. 52(1), 88–95 (2013)

    Article  Google Scholar 

  25. Padhan, S., Sahu, R.K., Panda, S.: Application of firefly algorithm for load frequency control of multi-area interconnected power system. Electr. Power Compon. Syst. 42(13), 1419–1430 (2014)

    Article  Google Scholar 

  26. Jaleeli, N., Ewart, D.N., Fink, L.H.: Understanding automatic generation control. IEEE Trans. Power Syst. 7(3), 1106–1122 (1992)

    Article  Google Scholar 

  27. Tripathy, S.C., et al.: Adaptive automatic generation control with superconducting magnetic energy storage in power systems. IEEE Prana Energy Convers 7(3), 434–441 (1992)

    Article  Google Scholar 

  28. Shayeghi, H., Jalili, A., Shayanfar, H.A.: A robust mixed H2/H∞ based LFC of a deregulated power system including SMES. Energy Convers. Manag. 49(10), 2656–2668 (2008)

    Article  Google Scholar 

  29. Ngamroo, I., Mitani, Y., Tsuji, K.: Application of SMES coordinated with solid-state phase shifter to load frequency control. IEEE Trans. Appl. Supercond. 9(2), 322–325 (1999)

    Article  Google Scholar 

  30. Bhatt, P., Roy, R., Ghoshal, S.P.: Comparative performance evaluation of SMES–SMES, TCPS–SMES and SSSC–SMES controllers in automatic generation control for a two-area hydro–hydro system. Int. J. Electr. Power Energy Syst. 33(10), 1585–1597 (2011)

    Article  Google Scholar 

  31. Al-Hamouz, Z., Al-Duwaish, H., Al-Musabi, N.: Optimal design of a sliding mode AGC controller: application to a nonlinear interconnected model. Electr. Power Syst. Res. 81(7), 1403–1409 (2011)

    Article  Google Scholar 

  32. Parmar, K.S., Majhi, S., Kothari, D.P.: Load frequency control of a realistic power system with multi-source power generation. Int. J. Electr. Power Energy Syst. 42(1), 426–433 (2012)

    Article  Google Scholar 

  33. Mohanty, B.: TLBO optimized sliding mode controller for realistic nonlinear interconnected AGC system. Int. J. Electr. Power Energy Syst. 73, 872–881 (2015)

    Article  Google Scholar 

  34. Abraham, R.J., Das, D., Patra, A.: Automatic generation control of an interconnected hydrothermal power system considering superconducting magnetic energy storage. Int. J. Electr. Power Energy Syst. 29(8), 571–579 (2007)

    Article  Google Scholar 

  35. Panda, Sidhartha: Multi-objective evolutionary algorithm for SSSC-based controller design. Electr. Power Syst. Res. 79(6), 937–944 (2009)

    Article  Google Scholar 

  36. Wang, L.X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  37. Slotine, J.J.E., Li, W.P.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  38. Farahani, M.: Design of PID controller using multi-objective genetic algorithm for load frequency control in interconnected power systems. J. Intell. Fuzzy Syst. 27(2), 709–716 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Panda, S., Yegireddy, N.K.: Automatic generation control of multi-area power system using multi-objective non-dominated sorting genetic algorithm-II. Int. J. Electr. Power Energy Syst. 53, 54–63 (2013)

    Article  Google Scholar 

  40. Tammam, M.A., Aboelela, M.A.S., Moustafa, M.A., Seif, A.E.A.: Fuzzy like PID controller tuning by multi-objective genetic algorithm for load frequency control in nonlinear electric power systems. Int. J. Adv. Eng. Technol. 5(1), 572–583 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Farahani.

Appendix

Appendix

SMES control loop:

$$T_{c} = 0.03,\quad I_{d0} = 20\;{\text{kA}},\quad L = 3H,\quad k_{f} = 0.001$$

The parameters used for power system shown in Fig. 1 are provided in [2]:

The parameters used for power system shown in Fig. 3 are provided in [33].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosraviani, M., Jahanshahi, M., Farahani, M. et al. Load–Frequency Control Using Multi-objective Genetic Algorithm and Hybrid Sliding Mode Control-Based SMES. Int. J. Fuzzy Syst. 20, 280–294 (2018). https://doi.org/10.1007/s40815-017-0332-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0332-z

Keywords