Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A New Algorithm for Ranking of Trapezoidal Fuzzy Numbers

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Fuzzy numbers are used to represent numerical quantities in a vague environment since the measurements are imprecise in nature in this environment. Ranking fuzzy numbers is then an important issue for decision-making problems in a fuzzy environment. Most of the existing ranking methods transform a fuzzy number into a real number based on certain criteria. On the other hand, other methods define a ranking index between two fuzzy sets or between a fuzzy set and others. However, there is yet no method that can always give a satisfactory solution. In this paper, the authors propose a new algorithm for ranking of trapezoidal fuzzy numbers. This method is based on the principle that there are only four possible topological configurations when we compare two trapezoidal fuzzy numbers. Moreover, the proposed method is consistent with our intuition and, when it is necessary, takes into account the decision-maker’s risk-attitude. The paper also presents several comparative examples and an application demonstrating the usage, advantages (simplicity, flexibility, practicability, etc.) and applicability of the proposed ranking method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Marichal, J.-L.: Aggregation operators for multi criteria decision aid. Ph.D. Thesis, Department of Management, FEGSS. University of Liège (1998)

  2. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning, Part 1. Inf. Sci. 8(3), 199–249 (1975)

    Article  Google Scholar 

  3. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning, Part 2. Inf. Sci. 8(4), 301–357 (1975)

    Article  Google Scholar 

  4. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning, Part 3. Inf. Sci. 9(1), 43–80 (1975)

    Article  Google Scholar 

  5. Merigó, J.M.: New extensions to the OWA operator and its application in business decision making. Ph.D. Thesis (In Spanish), Department of Business Administration, University of Barcelona (2008)

  6. Merigó, J.M., Gil-Lafuente, A.: Fuzzy induced generalized aggregation operators and its application in multi person decision making. Expert Syst. Appl. 38(8), 9761–9772 (2011)

    Article  Google Scholar 

  7. Simo, U.F., Gwét, H.: Fuzzy triangular aggregation operators. Int. J. Math. Math. Sci. (2018). https://doi.org/10.1155/2018/9209524

    Article  MathSciNet  MATH  Google Scholar 

  8. Jain, R.: Decision-making in the presence of fuzzy variables. IEEE Trans. Syst. Man Cybern. 6(10), 698–703 (1976)

    MATH  Google Scholar 

  9. Baldwin, J.F., Guild, N.C.F.: Comparison of fuzzy sets on the same decision space. Fuzzy Sets Syst. 2(3), 213–231 (1979)

    Article  MathSciNet  Google Scholar 

  10. Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 24(2), 143–161 (1981)

    Article  MathSciNet  Google Scholar 

  11. Dubois, D., Prade, H.: Ranking of fuzzy numbers in the setting of possibility theory. Inf. Sci. 30(3), 183–224 (1983)

    Article  MathSciNet  Google Scholar 

  12. Chen, S.H.: Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy Sets Syst. 17(2), 113–129 (1985)

    Article  MathSciNet  Google Scholar 

  13. Bortolan, G., Degani, R.: A review of some methods for ranking fuzzy subsets. Fuzzy Sets Syst. 15(1), 1–19 (1985)

    Article  MathSciNet  Google Scholar 

  14. Nakamura, K.: Preference relation on a set of fuzzy utilities as a basis for decision making. Fuzzy Sets Syst. 20(2), 147–162 (1986)

    Article  MathSciNet  Google Scholar 

  15. Lee, E.S., Li, R.L.: Comparison of fuzzy numbers based on the probability measure of fuzzy events. Comput. Math. Appl. 15(10), 887–896 (1988)

    Article  MathSciNet  Google Scholar 

  16. Kim, K., Park, K.: Ranking fuzzy numbers with index of optimism. Fuzzy Sets Syst. 35(2), 143–150 (1990)

    Article  MathSciNet  Google Scholar 

  17. Saade, J.J., Schwarzlander, H.: Ordering fuzzy sets over the real line: An approach based on decision making under uncertaintly. Fuzzy Sets Syst. 50(3), 237–246 (1992)

    Article  Google Scholar 

  18. Liou, T.S., Wang, M.J.J.: Ranking fuzzy numbers with integral value. Fuzzy Sets Syst. 50(3), 247–255 (1992)

    Article  MathSciNet  Google Scholar 

  19. Choobineh, F., Li, H.: An index for ordering fuzzy numbers. Fuzzy Sets Syst. 54(4), 287–294 (1993)

    Article  MathSciNet  Google Scholar 

  20. Cheng, C.H.: A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets Syst. 95(3), 307–317 (1998)

    Article  MathSciNet  Google Scholar 

  21. Wang, X., Kerre, E.E.: Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets Syst. 118(3), 375–385 (2001)

    Article  MathSciNet  Google Scholar 

  22. Wang, X., Kerre, E.E.: Reasonable properties for the ordering of fuzzy quantities (II). Fuzzy Sets Syst. 118(3), 387–405 (2001)

    Article  MathSciNet  Google Scholar 

  23. Tran, L., Duckstein, L.: Comparison of fuzzy numbers using a fuzzy distance measure. Fuzzy Sets Syst. 130(3), 331–341 (2002)

    Article  MathSciNet  Google Scholar 

  24. Chu, T.C., Tsao, C.T.: Ranking fuzzy numbers with an area between the centroid point and original point. Comput. Math. Appl. 43(1), 111–117 (2002)

    Article  MathSciNet  Google Scholar 

  25. Abbasbandy, S., Asady, B.: Ranking of fuzzy numbers by sign distance. Inf. Sci. 176(16), 2405–2416 (2006)

    Article  MathSciNet  Google Scholar 

  26. Deng, Y., Zhenfu, Z., Qi, L.: Ranking fuzzy numbers with an area method using radius of gyration. Comput. Math. Appl. 51(6), 1127–1136 (2006)

    Article  MathSciNet  Google Scholar 

  27. Wang, Y.M., Yang, J.B., Xu, D.L., Chin, K.S.: On the centroids of fuzzy numbers. Fuzzy Sets Syst. 157(7), 919–926 (2006)

    Article  MathSciNet  Google Scholar 

  28. Asady, B., Zendehnam, A.: Ranking fuzzy numbers by distance minimization. Appl. Math. Model. 31(11), 2589–2598 (2007)

    Article  Google Scholar 

  29. Wang, Z.X., Liu, Y.J., Fan, Z.P., Feng, B.: Ranking \(LR\)-fuzzy number based on deviation degree. Inf. Sci. 179(13), 2070–2077 (2009)

    Article  Google Scholar 

  30. Abbasbandy, S., Hajjari, T.: A new approach for ranking of trapezoidal fuzzy numbers. Comput. Math. Appl. 57(3), 413–419 (2009)

    Article  MathSciNet  Google Scholar 

  31. Valvis, E.: A new linear ordering of fuzzy numbers on subsets of \(\widetilde{\cal{P}}(\mathbb{R})\). Fuzzy Optim. Decision Mak. 8(2), 141–163 (2009)

    Article  MathSciNet  Google Scholar 

  32. Wang, Y.M., Luo, Y.: Area ranking of fuzzy numbers based on positive and negative ideal points. Comput. Math. Appl. 58(9), 1769–1779 (2009)

    Article  MathSciNet  Google Scholar 

  33. Asady, B.: The revised method of ranking \(LR\) fuzzy number based on deviation degree. Expert Syst. Appl. 37(7), 5056–5060 (2010)

    Article  Google Scholar 

  34. Asady, B.: Revision of distance minimization method for ranking of fuzzy numbers. Appl. Math. Model. 35(3), 1306–1313 (2011)

    Article  MathSciNet  Google Scholar 

  35. Ezzati, R., Allahviranloo, T., Khezerloo, S., Khezerloo, M.: An approach for ranking of fuzzy numbers. Expert Syst. Appl. 39(1), 690–695 (2012)

    Article  Google Scholar 

  36. Boulmakoul, A., Laarabi, M.H., Sacile, R., Garbolino, E.: An original approach to ranking fuzzy numbers by inclusion index and bitset encoding. Fuzzy Optim. Decision Mak. 16(1), 23–49 (2017)

    Article  MathSciNet  Google Scholar 

  37. Yu, V.F., Van, L.H., Dat, L.Q., Chi, H.T.X., Chou, S.-Y., Duong, T.T.T.: Analyzing the ranking method for fuzzy numbers in fuzzy decision making based on the magnitude concepts. Int. J. Fuzzy Syst. 19(5), 1279–1289 (2017)

    Article  Google Scholar 

  38. Firozja, M.A., Balf, F.R., Firouzian, S.: Vague ranking of fuzzy numbers. Math. Sci. 11(3), 189–193 (2017)

    Article  MathSciNet  Google Scholar 

  39. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, INC., London (1980)

    MATH  Google Scholar 

  40. Zimmermann, H.-J.: Fuzzy Sets Theory and Its Application. Kluwer Academic Press, Dordrecht (1991)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are thankful to all the referees for their efficient comments and suggestions in obtaining the present form of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Florian Simo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simo, U.F., Gwét, H. A New Algorithm for Ranking of Trapezoidal Fuzzy Numbers. Int. J. Fuzzy Syst. 20, 2355–2367 (2018). https://doi.org/10.1007/s40815-018-0498-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0498-z

Keywords