Abstract
The objective of this paper presents a novel trajectory estimation (TE) system for mitigating the measurement noise and the undulation for the implementation of the touch interface. The methodology is based on an adaptive Kalman filter with a fuzzy neural network (FNN). The FNN is implemented as an artificial intelligence decision maker to regulate the smoothness of the output estimation. In real time, the FNN adaptively configures the filtering performance of the Kalman filter by analyzing the trajectory using the Fourier spectrum and the kinematic data. The result of this research is demonstrated on the touch interface that is implemented using the IR camera sensing method, and the proposed TE system is embedded to a coordinate processing module that converts the raw touch coordinates into the USB human interface device multi-touch protocol. A 70-inch projector screen is set up for the experiment, and the touch trajectories are tested with various magnitudes of measurement noise. The significance of the proposed TE system is demonstrated by showing the tracking delay and the distortion of the filtered trajectory are adaptively reduced. As the magnitude of the measurement noise increases, the proposed TE system detects the unwanted high-frequency component and decreases the filtering gain to stabilize the smoothness of the output trajectory. In conclusion, when compared to the recent researches, the proposed TE system shows lower tracking error and tolerates high magnitude of randomly appeared noise on the touch interface.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Miyamoto, M., Hamaguchi, M., Nagao, A.: A 143 × 81 mutual-capacitance touch-sensing analog front-end with parallel drive and differential sensing architecture. IEEE J. Solid-State Circuits 50(1), 335–343 (2015). https://doi.org/10.1109/JSSC.2014.2364092
Aguilar, R.N., Meijer, G.C.M.: Fast interface electronics for a resistive touch screen. Proc. IEEE Sens. 2, 1360–1363 (2002). https://doi.org/10.1109/ICSENS.2002.1037318
Schöning, J., Hook, J., Bartindale, T.: Building interactive multi-touch surfaces. In: Müller-Tomfelde, C. (ed.) Tabletops—Horizontal Interactive Displays. Human–Computer Interaction Series. Springer, London (2010). https://doi.org/10.1007/978-1-84996-113-4_2
Wei, Z., et al.: The design of infrared touch screen based on MCU. In: 2011 IEEE International Conference on Information and Automation, Shenzhen, pp. 485–489 (2011). https://doi.org/10.1109/ICINFA.2011.5949041
Liang, J., Lin, K., Chen, H., Wang, W.: Turn any display into a touch screen using infrared optical technique. IEEE Access 6, 13033–13040 (2018). https://doi.org/10.1109/ACCESS.2018.2812756
Moeller, J., Kerne, A.: Zero touch: an optical multi-touch and free-air interaction architecture. In: CHI’12, pp. 2165–2174 (2012). https://doi.org/10.1145/2207676.2208368
Han, J.Y.: Low-cost multi-touch sensing through frustrated total internal reflection. In: UIST, pp. 115–118 (2005). https://doi.org/10.1145/1095034.1095054
Hu, J., Li, G., Xie, X., Lv, Z., Wang, Z.: Bare-fingers touch detection by the button’s distortion in a projector–camera system. IEEE Trans. Circuits Syst. Video Technol. 24(4), 566–575 (2014). https://doi.org/10.1109/TCSVT.2013.2280088
Li, B., Wei, T., Wei, X., Wang, J., Liu, W., Zheng, R.: A touch prediction and window sensing strategy for low-power and low-cost capacitive multitouch screen systems. J. Display Technol. 12(6), 646–657 (2016). https://doi.org/10.1109/JDT.2016.2517094
Ko, S., et al.: Low noise capacitive sensor for multi-touch mobile handset’s applications. In: 2010 IEEE Asian Solid-State Circuits Conference, Beijing, pp. 1–4 (2010). https://doi.org/10.1109/ASSCC.2010.5716570
Wang, J., Chuang, F.: An accelerometer-based digital pen with a trajectory recognition algorithm for handwritten digit and gesture recognition. IEEE Trans. Ind. Electron. 59(7), 2998–3007 (2012). https://doi.org/10.1109/TIE.2011.2167895
Zhang, Z., Li, J., Li, M.: A smooth tracking algorithm for capacitive touch panels. In: International Conference on Communication and Electronic Information Engineering (2017). https://doi.org/10.2991/ceie-16.2017.73
Chui, C.K., Chen, G.: Kalman Filtering with Real-Time Applications. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-87849-0
Sung, T.Y., Hu, Y.H.: Parallel VLSI implementation of the Kalman filter. IEEE Trans. Aerosp. Electron. Syst. AES 23, 215–224 (1987). https://doi.org/10.1109/TAES.1987.313375
Lin, C.L., et al.: Tracking touched trajectory on capacitive touch panels using an adjustable weighted prediction covariance matrix. IEEE Trans. Ind. Electron. 64(6), 4910–4916 (2017). https://doi.org/10.1109/TIE.2017.2669887
Lin, C.L., Chang, Y.M., Hung, C.C., et al.: Position estimation and smooth tracking with a fuzzy-logic-based adaptive strong tracking Kalman filter for capacitive touch panels. IEEE Trans. Ind. Electron. 62(8), 5097–5108 (2015). https://doi.org/10.1109/TIE.2015.2396874
Lin, C.L., Chang, Y.M., Chen, H.S., et al.: Position tracking based on particle filter for self-capacitance single-touch screen panels. J. Display Technol. 11(2), 165–169 (2015). https://doi.org/10.1109/JDT.2014.2363296
Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybernet. 23, 665–684 (1993). https://doi.org/10.1109/21.256541
Nõmm, S., Toomela, A.: An alternative approach to measure quantity and smoothness of the human limb motions. Est. J. Eng. 19(4), 298–308 (2013). https://doi.org/10.3176/eng.2013.4.05
Hogan, N., Sternad, D.: Sensitivity of smoothness measures to movement duration amplitude and arrests. J. Mot. Behav. 41(6), 529–534 (2009). https://doi.org/10.3200/35-09-004-RC
Balasubramanian, S., Melendez-Calderon, A., Burdet, E.: A robust and sensitive metric for quantifying movement smoothness. IEEE Trans. Biomed. Eng. 59(8), 2126–2136 (2012). https://doi.org/10.1109/TBME.2011.2179545
Balasubramanian, S., Melendez-Calderon, A., Roby-Brami, A., Burdet, E.: On the analysis of movement smoothness. J. Neuroeng. Rehabil. 12(1), 112 (2015). https://doi.org/10.1186/s12984-015-0090-9
Nauk, D., Kruse, R.: Neuro-fuzzy systems for function approximation. Fuzzy Sets Syst. 101(2), 261–271 (1999). https://doi.org/10.1016/S0165-0114(98)00169-9
Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5300-3
Chao, C.T., Teng, C.C.: A fuzzy neural network based extended Kalman filter. Int. J. Syst. Sci. 27(3), 333–339 (1996). https://doi.org/10.1080/00207729608929221
Chen, C.L.P., Liu, Y., Wen, G.: Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems. IEEE Trans. Cybern. 44(5), 583–593 (2014). https://doi.org/10.1109/TCYB.2013.2262935
Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2883374
Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2895560
Sung, T.Y., Hsin, H.C., et al.: Low-power and high-speed CORDIC-based split-radix FFT processor for OFDM systems. Digit. Signal Prog. 20(2), 511–527 (2010). https://doi.org/10.1016/j.dsp.2009.08.008
Lin, H.C.: Inter-harmonic identification using group-harmonic weighting approach based on the FFT. IEEE Trans. Power Electron. 23(3), 1309–1319 (2008). https://doi.org/10.1109/IECON.2007.4459961
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Li, CI., Chen, GD., Sung, TY. et al. Novel Adaptive Kalman Filter with Fuzzy Neural Network for Trajectory Estimation System. Int. J. Fuzzy Syst. 21, 1649–1660 (2019). https://doi.org/10.1007/s40815-019-00686-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-019-00686-y