Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

A Fuzzy Segmentation Method to Learn Classification of Mitosis

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Mitotic counts are widely used as a metric for cellular proliferation for prognosis and to determine the aggressiveness of individual cancers. This study presents a less labor-intensive method to count mitotic cells in breast cell sections. The proposed algorithm involves two phases: candidate segmentation and detection. During candidate segmentation, images are filtered through a blue ratio threshold to remove unnecessary background information and to increase the color difference between targets and non-targets for an entire digitized image. A fuzzy candidate segmentation method is used to adaptively determine threshold values in order to dichotomize gray-level images and distinguish the images of mitotic candidates from the background. The thresholding scheme integrates the spatial characteristics’ distribution in a histogram to determine an intensity threshold for the processed image, in order to filter insignificant information. During the detection phase, a two-class classification uses an attention mechanism that is realized by a set of fully connected neural networks, instead of convolutional layers, which decreases the computational cost. The validation test using ICPR2012 competition datasets shows that the proposed model outperforms current state-of-art techniques, in terms of the metrics, Accuracy, F1-score, and Precision and Recall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wikipedia, H&E stain. https://en.wikipedia.org ‘wiki’ H&E_stain (2018)

  2. M. I. A. G. E. (IMAG/e), Tumor Proliferation Assessment Challenge 2016. http://tupac.tue-image.nl/. (2016)

  3. T. IPAL, Pitié-Salpêtrière Hospital, The Ohio State University, Mitosis Detection in Breast Cancer Histological Images (ICPR2012 Mitosis dataset). http://ludo17.free.fr/mitos_2012/index.html. (2011)

  4. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  5. Dong, L., et al.: An efficient iterative algorithm for image thresholding. Pattern Recognit. Lett. 29, 1311–1316 (2008)

    Article  Google Scholar 

  6. Reddi, S.S., et al.: An optimal multiple threshold scheme for image segmentation. IEEE Trans. System Man Cybern. 14(4), 661–665 (1984)

    Article  Google Scholar 

  7. Bug, D., Feuerhake, F., Merhof, D.: Foreground extraction for histopathological whole-slide imaging. Bildverarbeitung für die Medizin 2015, 419–424 (2015)

    Google Scholar 

  8. Hiary, H., Alomari, R.S., Chaudhary, V.: Segmentation and localisation of whole slide images using unsupervised learning. Image Process. 7, 464–471 (2013)

    Article  Google Scholar 

  9. Ten Kate, T., Belien, J., Smeulders, A., Baak, J.: Method for counting mitoses by image processing in Feulgen stained breast cancer sections. Cytometry J Int Soc Anal Cytol. 14(3), 241–250 (1993)

    Google Scholar 

  10. F. Pourakpour, H. Ghassemian,: Automated mitosis detection based on combination of effective textural and morphological features from breast cancer histology slide images. In: 2015 22nd Iranian Conference on Biomedical Engineering (ICBME), IEEE, New York pp. 269–274 (2015)

  11. Litjens, G., Sánchez, C.I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I., Hulsbergen-van de Kaa, C., Bult, P., van Ginneken, B., van der Laak, J.: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Nat. Sci. Rep. 6, 26286 (2016)

    Article  Google Scholar 

  12. Ehteshami Bejnordi, B., Balkenhol, M., Litjens, G., Holland, R., Bult, P., Karssemeijer, N., van der Laak, J.: Automated detection of DCIS in whole-slide H&E stained breast histopathology images. IEEE Trans. Med. Imaging 35, 2141–2150 (2016)

    Article  Google Scholar 

  13. G. Litjens, B. Ehteshami Bejnordi, N. Timofeeva, G. Swadi, I. Kovacs, C. A. Hulsbergen-van de Kaa, and J. A. W. M. van der Laak,: Automated detection of prostate cancer in digitized whole-slide images of H&E-stained biopsy specimens. In: Medical Imaging, vol. 9420 of Proceedings of the SPIE, p. 94200B, (2015)

  14. D.C. Ciresan, U. Meier, J. Schmidhuber,: Multi-column deep neural networks for image classification. I: Computer Vision and Pattern Recognition. pp. 3642–3649 (2012)

  15. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning Hierarchical Features for Scene Labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915–1929 (2012)

    Article  Google Scholar 

  16. Wang, H.: Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J. Med. Imaging 1(3), 1–8 (2014)

    Article  Google Scholar 

  17. C. D. Cireşan, et al.: Mitosis detection in breast cancer histology images with deep neural networks. In: Medical Image Computing and Computer-Assisted Intervention MICCAI 2013. Springer Berlin Heidelberg pp. 411–418 (2013)

  18. V. Mnih, N. Heess, A. Graves, K. Kavukcuoglu,: Recurrent models of visual attention. In: Advances in Neural Information Processing Systems, (2014)

  19. M. Murakami, N. Honda,: An exposure control system of video cameras based on fuzzy logic using color information. In: Proc. Fifth IEEE Int. Conf. Fuzzy Systems, pp. 2181–2187, (1996)

  20. https://zh.wikipedia.org/wiki/JPEG

  21. H. Irshad et al.: Automated mitosis detection using texture, SIFT features and HMAX biologically inspired approach. J. Pathol. Inform. 4(Suppl) (2013)

  22. Saha, M., Chakraborty, C., Racoceanu, D.: Efficient deep learning model for mitosis detection using breast histopathology images. Comput. Med. Imaging Graph. 64, 29–40 (2018)

    Article  Google Scholar 

  23. D. Bahdanau,et al.: Neural machine translation by jointly learning to align and translate. In: ICLR, (2015)

  24. J. Schulmanet al.: Proximal policy optimization algorithms. arXiv:1707.06347 [cs.LG]

  25. Bhatnagara, S., et al.: Natural actor–critic algorithms. Automatica 45(11), 2471–2482 (2009)

    Article  MathSciNet  Google Scholar 

  26. Keras-applications. https://github.com/keras-team/keras-applications/blob/master/keras_applications/vgg19.py. (2019)

  27. gihub: lenet-5. https://github.com/topics/lenet-5. (2019)

Download references

Funding

This research was supported by the Key Technology Research and Development Program of Zhejiang Province (No. 2017C03017); the Natural Science Foundation of China (Grants No. 11932017); Project of the regional diagnosis and treatment center of the Health Planning Committee (No. JBZX-201903); Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ17H160008.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maxwell Hwang or Kefeng Ding.

Additional information

Maxwell Hwang and Da Wang are the co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, M., Wang, D., Wu, C. et al. A Fuzzy Segmentation Method to Learn Classification of Mitosis. Int. J. Fuzzy Syst. 22, 1653–1664 (2020). https://doi.org/10.1007/s40815-020-00868-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00868-z

Keywords