Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Time Fractional Heat Equation of n + 1-Dimension in Type-1 and Type-2 Fuzzy Environment

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Typically, the parameters of a practical problem are considered to be deterministic. Nevertheless, there may be possibility that these parameters are incomplete owing to observational or experimental errors. Fuzzy sets are capable of handling such problems. In addition, the majority of studies on fuzzy fractional heat equations have employed two spatial variables and fuzzy sets with deterministic membership. In some instances, however, there may be more than two spatial variables, and the membership grade associated with an uncertain parameter may also contain imprecise information. Consequently, dealing with such a situation may be fascinating. In this regard, the main objective of this research is to develop alternative methods for solving the \(n+1\)-dimensional fractional order heat equation with an external source term in an uncertain environment. The problem is addressed by using the Elzaki transformed homotopy perturbation method and the fractional reduced differential transformation method in the fuzzy environment. Caputo fuzzy fractional derivatives are considered here. In this study, triangular fuzzy numbers and Gaussian fuzzy numbers are utilised to handle type-1 fuzzy uncertainty, whereas triangularly perfect quasi type-2 fuzzy numbers and newly introduced Gaussian-triangular type-2 fuzzy numbers are used to handle type-2 fuzzy uncertainty. Numerical examples with graphical representations are provided to demonstrate the applicability of the approaches. Convergence plots are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. De Oliveira, E.C., Tenreiro, J.A., Machado.: A review of definitions for fractional derivatives and integral. Math. Prob. Eng., 2014 (2014)

  2. Atangana, A.: On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Appl. Math. Comput. 273, 948–956 (2016)

    MathSciNet  Google Scholar 

  3. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Willey, New York (1993)

    Google Scholar 

  4. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    Google Scholar 

  5. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Non-linear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    MathSciNet  ADS  Google Scholar 

  6. Hilfer, R.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2000)

    MathSciNet  Google Scholar 

  7. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002)

    MathSciNet  Google Scholar 

  8. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, New York (2006)

    Google Scholar 

  9. Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    ADS  Google Scholar 

  10. Kulish, V.V., Lage, J.L.: Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124(3), 803–806 (2002)

    Google Scholar 

  11. Huan, H.J.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178(3–4), 257–262 (1999)

    MathSciNet  ADS  Google Scholar 

  12. Biswal, U., Chakraverty, S., Ojha, B.K.: Application of homotopy perturbation method in inverse analysis of Jeffery–Hamel flow problem. Eur. J. Mech. B 86, 107–112 (2021)

    MathSciNet  Google Scholar 

  13. Ateş, I., Zegeling, P.A.: A homotopy perturbation method for fractional-order advection-diffusion-reaction boundary-value problems. Appl. Math. Model. 47, 425–441 (2017)

    MathSciNet  Google Scholar 

  14. Das, P., Rana, S., Ramos, H.: Homotopy perturbation method for solving Caputo-type fractional-order Volterra-Fredholm integro-differential equations. Comput. Math. Methods 1(5), e1047 (2019)

    MathSciNet  Google Scholar 

  15. Jena, R.M., Chakraverty, S., Yavuz, M.: Two-hybrid techniques coupled with an integral transformation for Caputo time-fractional Navier–Stokes equations. Progr. Fract. Differ. Appl. 6(3), 201–213 (2020)

    Google Scholar 

  16. Jena, R.M., Chakraverty, S.: Solving time-fractional Navier–Stokes equations using homotopy perturbation Elzaki transform. SN Appl. Sci. 1(1), 1–13 (2019)

    Google Scholar 

  17. Loyinmi, A.C., Akinfe, T.K.: Exact solutions to the family of Fisher’s reaction-diffusion equation using Elzaki homotopy transformation perturbation method. Eng. Rep. 2(2), e12084 (2020)

    CAS  Google Scholar 

  18. Elzaki, T.M., Hilal, E.M.A., Arabia, J.S.: Homotopy perturbation and Elzaki transform for solving nonlinear partial differential equations. Math. Theory Model. 2(3), 33–42 (2012)

    Google Scholar 

  19. Abdou, M.A.: Fractional reduced differential transform method and its applications. J. Nonlinear Sci. Numer. Simul. 26, 55–64 (2018)

    MathSciNet  Google Scholar 

  20. Abuasad, S., Hashim, I., Abdul, K., Samsul, A.: Modified fractional reduced differential transform method for the solution of multiterm time-fractional diffusion equations. Adv. Math. Phys. (2019)

  21. Tamboli, V.K., Tandel, P.V.: Solution of the time-fractional generalized Burger-Fisher equation using the fractional reduced differential transform method. J. Ocean Eng. Sci. 7(4), 399–407 (2022)

    Google Scholar 

  22. Gupta, P.K.: Approximate analytical solutions of fractional Benney-Lin equation by reduced differential transform method and the homotopy perturbation method. Comput. Math. Appl. 61(9), 2829–2842 (2011)

    MathSciNet  ADS  Google Scholar 

  23. Jena, R.M., Chakraverty, S., Rezazadeh, H., Ganji, D.D.: On the solution of time-fractional dynamical model of Brusselator reaction-diffusion system arising in chemical reactions. Math. Methods Appl. Sci. 43(7), 3903–3913 (2020)

    MathSciNet  Google Scholar 

  24. Khan, H., Shah, R., Kumam, P., Arif, M.: Analytical solutions of fractional-order heat and wave equations by the natural transform decomposition method. Entropy 21(6), 597 (2019)

    MathSciNet  ADS  PubMed  PubMed Central  Google Scholar 

  25. Khan, T., Shah, K., Khan, A., Khan, R.A.: Solution of fractional order heat equation via triple Laplace transform in 2 dimensions. Math. Methods Appl. Sci. 41(2), 818–825 (2018)

    MathSciNet  ADS  Google Scholar 

  26. Gul, H., Alrabaiah, H., Ali, S., Shah, K., Muhammad, S.: Computation of solution to fractional order partial reaction diffusion equations. J. Adv. Res. 25, 31–38 (2020)

    PubMed  PubMed Central  Google Scholar 

  27. Djennadi, S., Shawagfeh, N., Arqub, O.A.: Well-posedness of the inverse problem of time fractional heat equation in the sense of the Atangana-Baleanu fractional approach. Alex. Eng. J. 59(4), 2261–2268 (2020)

    Google Scholar 

  28. Bonforte, M., Sire, Y., Vázquez, J.L.: Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 153, 142–168 (2017)

    MathSciNet  Google Scholar 

  29. Povstenko, Y.Z.: Thermoelasticity that uses fractional heat conduction equation. J. Math. Sci. 162, 296–305 (2009)

    MathSciNet  Google Scholar 

  30. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

    MathSciNet  Google Scholar 

  31. Chakraverty, S., Sahoo, D.M., Mahato, N.R.: Concepts of Soft Computing. Springer, New York (2019)

    Google Scholar 

  32. Zadeh, L.A.: Fuzzy sets. In: Zadeh, L.A. (ed.) Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers, pp. 394–432. World Scientific, Singapore (1996)

    Google Scholar 

  33. Goetschel, R., Jr., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets Syst. 18(1), 31–43 (1986)

    MathSciNet  Google Scholar 

  34. Kaleva, O.: Fuzzy differential equations. Fuzzy Sets Syst. 24(3), 301–317 (1987)

    MathSciNet  Google Scholar 

  35. Chakraverty, S., Tapaswini, S., Behera, D.: Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications. Wiley, New York (2016)

    Google Scholar 

  36. Al-Smadi, M., Arqub, O.A., Zeidan, D.: Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: theorems and applications. Chaos Solitons Fractals 146, 110891 (2021)

    MathSciNet  Google Scholar 

  37. Ahmad, M.Z., Hasan, M.K., Abbasbandy, S.: Solving fuzzy fractional differential equations using Zadeh’s extension principle. Sci. World J., 2013 (2013)

  38. Arfan, M., Shah, K., Abdeljawad, T., Hammouch, Z.: An efficient tool for solving two-dimensional fuzzy fractional-ordered heat equation. Numer. Methods Partial Differ. Equ. 37(2), 1407–1418 (2021)

    MathSciNet  Google Scholar 

  39. Mohapatra, D., Chakraverty, S.: Initial value problems in type-2 fuzzy environment. Math. Comput. Simul. 204, 230–242 (2023)

    MathSciNet  Google Scholar 

  40. Mohapatra, D., Chakraverty, S.: Type-2 fuzzy linear system of equations with application in static problem of structures. Math. Methods Appl. Sci. 46(1), 840–866 (2022)

    MathSciNet  Google Scholar 

  41. Mazandarani, M., Najariyan, M.: Type-2 fuzzy fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 19(7), 2354–2372 (2014)

    MathSciNet  ADS  Google Scholar 

  42. Zimmermann, H.J.: Introduction to fuzzy sets. In: Fuzzy Set Theory-and Its Applications, pp. 1–8. Springer, New York (2001)

  43. Mazandarani, M., Kamyad, A.V.: Modified fractional Euler method for solving fuzzy fractional initial value problem. Commun. Nonlinear Sci. Numer. Simul. 18(1), 12–21 (2013)

    MathSciNet  ADS  Google Scholar 

  44. Mendel, J.M., John, R.B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)

    Google Scholar 

  45. Mazandarani, M., Najariyan, M.: Differentiability of type-2 fuzzy number-valued functions. Commun. Nonlinear Sci. Numer. Simul. 19(3), 710–725 (2014)

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehashish Chakraverty.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, D., Chakraverty, S. & Alshammari, M. Time Fractional Heat Equation of n + 1-Dimension in Type-1 and Type-2 Fuzzy Environment. Int. J. Fuzzy Syst. 26, 1–16 (2024). https://doi.org/10.1007/s40815-023-01569-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01569-z

Keywords