Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Prognostication of Myocardial Infarction Using Lattice Ordered Linear Diophantine Multi-fuzzy Soft Set

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In modern nations, people are more conscious of their health. As a result, one of the most active research fields has been improving medical field applications. According to medical data, Myocardial Infarction (MI) is the leading cause of illness and mortality worldwide. The diagnosis of MI involves a lot of uncertain values and imprecise information. Linear Diophantine Fuzzy Set (LDFS) removes the restrictions of existing prevailed concepts such as Intuitionistic Fuzzy Set (IFS), Pythagorean Fuzzy Set (PFS), and q-Rung Orthopair Fuzzy Set (q-ROFS). In this manuscript, we impart the idea of Linear Diophantine Multi-Fuzzy Soft Set (LDMFSS) and inspect some depict rudimentary properties. An order between parameters is established and the innovative theory of Lattice ordered Linear Diophantine Multi-Fuzzy Soft Set (LLDMFSS) is launched. The algorithmic approach is instigated by introducing Root Mean Square Sum (RMSS) soft set for diagnosing the risk level of patients, since Heart disease diagnosis continues to be a significant challenge for medical professionals with less experience. Here, our suggested theory is designed to address such a problem by considering the people who are most impacted by MI. In order to prioritize the parameters based on our demands, LLDMFSS is best appropriate for particular types of difficulties. The main goal is to introduce the idea of LLDMFSS and the use of LLDMFSS to predict MI. Its superiority is demonstrated with a comparison of our proposed work to current fuzzy sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

No data were used in this study.

References

  1. Zhou, L., Liu, Y., Sun, H., Li, H., Zhang, Z., Hao, P.: Usefulness of enzymefree and enzyme-resistant detection of complement component 5 to evaluate acute myocardial infarction. Sens. Actuators B 369, 132315 (2022). https://doi.org/10.1016/j.snb.2022.132315

    Article  Google Scholar 

  2. Al-Zuhairi, I., Al-Qudah, Y., Chammam, W., Khalaf, M., El moasry, A., Qaqazeh, H., Almousa, M.: Fuzzy parameterized complex multi-fuzzy soft expert set in prediction of coronary artery disease. J. Progressive Res. Math. 16(4), 3133–3157 (2020)

    MATH  Google Scholar 

  3. Hassan, N., Sayed, O.R., Khalil, A.M., et al.: Fuzzy soft expert system in prediction of coronary artery disease. Int. J. Fuzzy Syst. 19, 1546–1559 (2017)

    Article  MATH  Google Scholar 

  4. Mokeddem, S.A.: A fuzzy classification model for myocardial infarction risk assessment. Appl. Intell. 48, 1233–1250 (2018)

    MATH  Google Scholar 

  5. Djatna, T., Hardhienata, M.K.D., Masruriyah, A.F.N.: An intuitionistic fuzzy diagnosis analytics for stroke disease. J. Big Data 5, 1–14 (2018)

    Article  Google Scholar 

  6. Naeem, K., Riaz, M., Karaaslan, F.: A mathematical approach to medical diagnosis via Pythagorean fuzzy soft TOPSIS, VIKOR and generalized aggregation operators. Complex Intell. Syst. 7, 2783–2795 (2021)

    Article  MATH  Google Scholar 

  7. Zadeh, L.A.: Fuzzy sets. Inf. Controls 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  8. Molodtsov, D.: Soft set theory. Comput. Math. Appl. 37, 19–31 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Atanassov, K.T.: Intuitionistic Fuzzy sets. Fuzzy set system 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yager, R.R.: Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22(4), 958–965 (2014)

    Article  MATH  Google Scholar 

  11. Yager, R.R.: Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25(5), 1222–1230 (2017)

    Article  MATH  Google Scholar 

  12. Riaz, M., Hashmi, M.R.: Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems. J. Intell. Fuzzy Syst. 37, 5417–5439 (2019)

    Article  MATH  Google Scholar 

  13. Iampan, A., Garcia, G.S., Riaz, M., Athar Farid, H.M., Chinram, R.: Linear diophantine fuzzy einstein aggregation operators for multi-criteria decision-making problems. J. Math. 1–31 (2021)

  14. Ayub, S., Shabir, M., Riaz, M., Aslam, M., Chinram, R.: Linear Diophantine fuzzy relations and their algebraic properties with decision making. Symmetry 13(6), 945 (2021)

    Article  MATH  Google Scholar 

  15. Riaz, M., Hashmi, M.R., Kalsoom, H., Pamucar, D., Chu, M.: Linear Diophantine fuzzy soft rough sets for the selection of sustainable material handling equipment. Symmetry 12, 1215 (2020)

    Article  MATH  Google Scholar 

  16. Hashmi, M.R., Tehrim, S.T., Riaz, M., Pamucar, D., Cirovic, G.: Spherical linear Diophantine fuzzy soft rough sets with multi-criteria decision making. Axioms 10, 185 (2021)

    Article  MATH  Google Scholar 

  17. Parimala, M., Jafari, S., Riaz, M., Aslam, M.: Applying the Dijkstra Algorithm to solve a linear Diophantine fuzzy environment. Symmetry 13(9), 1616 (2021)

    Article  MATH  Google Scholar 

  18. Prakash, K., Parimala, M., Garg, H., Riaz, M.: Lifetime prolongation of a wireless charging sensor network using a mobile robot via linear Diophantine fuzzy graph environment. Complex Intell. Syst. 8, 2419–2434 (2022)

    Article  Google Scholar 

  19. Maji, P.K., Biswas, R., Roy, A.R.: Fuzzy soft sets. J. Fuzzy Math. 9(3), 589–602 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Zhan, J., Alcantud, J.C.: A novel type of soft rough covering and its application to multicriteria group decision making. Artif. Intell. Rev. 52, 2381–2410 (2019)

    Article  MATH  Google Scholar 

  21. Zhang, L., Zhan, J.: Fuzzy soft β-covering based fuzzy rough sets and corresponding decision-making applications. Int. J. Mach. Learn. Cybern. 10, 1487–1502 (2019)

    Article  MATH  Google Scholar 

  22. Maji, P.K., Biswas, R., Roy, A.R.: Intuitionistic fuzzy soft sets. J. Fuzzy Math. 9, 677–692 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Hayat, K., Ali, M.I., Alcantud, J.C.R.: Best concept selection in design process: an application of generalized intuitionistic fuzzy soft sets. J. Intel. Fuzzy Syst. 35, 5707–5720 (2018)

    Article  MATH  Google Scholar 

  24. Deli, I., Cagman, N.: Intuitionistic fuzzy soft set theory and its decision making. Appl. Soft Comput. 28, 109–113 (2013)

    Article  MATH  Google Scholar 

  25. Peng, X.A., Yang, Y., Song, J.: Pythagoren fuzzy soft set and its application. Comput. Eng. 41, 224–229 (2015)

    MATH  Google Scholar 

  26. Hussain, A., Ali, M.I., Mahmood, T., Munir, M.: q-Rung orthopair fuzzy soft average aggregation operators and their application in multicriteria decision-making. Int. J. Intell. Syst. 35(4), 571–599 (2020)

    Article  MATH  Google Scholar 

  27. Parmaksiz, Z., Arslan, B., Memis, S., Enginoglu, S.: Diagnosing COVID-19 prioritizing treatment, and planning vaccination priority via fuzzy parameterized fuzzy soft matrices. J. New Theory 39, 54–83 (2022)

    Article  MATH  Google Scholar 

  28. Memis, S., Enginoglu, S., Erkan, U.: A new classification method using soft decision-making based on an aggregation operator of fuzzy parameterized fuzzy soft matrices. Turk. J. Electr. Eng. Comput. Sci. 3(3), 871–890 (2022)

    Article  MATH  Google Scholar 

  29. Garg, H., Vimala, J., Rajareega, S., Preethi, D., Dominguez, L.P.: Complex intuitionistic fuzzy soft SWARA—COPRAS approach: an application of ERP software selection. AIMS Math. 7(4), 5895–5909 (2022)

    Article  MATH  Google Scholar 

  30. Dey, A., Senapati, T., Pal, M., Chen, G.: A novel approach to hesitant multifuzzy soft set based decision-making. AIMS Math. 5(3), 1985–2008 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ali, M.I., Mehmood, T., Rehman, M.M.U., Aslam, M.F.: On lattice ordered soft set. Appl. Soft Comput. 36, 499–505 (2015)

    Article  MATH  Google Scholar 

  32. Sebastian, S.: Multi-fuzzy sets. Int. Math. Forum 5, 2471–2476 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Yang, Y., Tan, X., Meng, C.: The multi-fuzzy soft set and its application in decision making. Appl. Math. Model. 37, 4915–4923 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Begam, S.S., Vimala, J.: Application of lattice ordered multi-fuzzy soft set in forecasting process. J. Intell. Fuzzy Syst. 36, 2323–2331 (2019)

    Article  MATH  Google Scholar 

  35. Begam, S.S., Vimala, J., Preethi, D.: A novel study on the algebraic applications of special class of lattice ordered multi-fuzzy soft sets. J. Discret. Math. Sci. Cryptogr. 22, 883–899 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Das, S., Kar, M.B., Kar, S.: Group multi-criteria decision making using intuitionistic multi-fuzzy sets. J. Uncertainty Anal. Appl. 1, 10 (2013)

    Article  MATH  Google Scholar 

  37. Peng, X., Yang, Y.: Some results for Pythagorean fuzzy sets. Int. J. Intell. Syst. 30, 1133–1160 (2015)

    Article  MATH  Google Scholar 

  38. Das, S., Kar, S.: Intuitionistic multi fuzzy soft set and its application in decision making. In: Maji, P., Ghosh, A., Murty, M.N., Ghosh, K., Pal, S.K. (eds.) Pattern Recognition and Machine Intelligence. PReMI 2013. Lecture Notes in Computer Science, vol. 8251, pp. 587–592. Springer, Berlin (2013)

  39. Mahmood, T., Ali, M.I., Malik, M.A., Ahmed, W.: On lattice ordered intuitionistic fuzzy soft sets. Int. J. Algebra Stat. 7, 46–61 (2018)

    Article  MATH  Google Scholar 

  40. Liu, H., Liu, M., Li, D., Zheng, W., Yin, L., Wang, R.: Recent advances in pulse-coupled neural networks with applications in image processing. Electronics 11(20), 3264 (2022). https://doi.org/10.3390/electronics11203264

    Article  MATH  Google Scholar 

  41. Ban, Y., Wang, Y., Liu, S., Yang, B., Liu, M., Yin, L., Zheng, W.: 2D/3D multimode medical image alignment based on spatial histograms. Appl. Sci. 12(16), 8261 (2022). https://doi.org/10.3390/app12168261

    Article  MATH  Google Scholar 

  42. Wang, Y., Zhai, W., Zhang, H., Cheng, S., Li, J.: Injectable polyzwitterionic lubricant for complete prevention of cardiac adhesion. Macromol. Biosci. 23, 2200554 (2023). https://doi.org/10.1002/mabi.202200554

    Article  Google Scholar 

  43. Lv, Z., Yu, Z., Xie, S., Alamri, A.: Deep learning-based smart predictive evaluation for interactive multimedia-enabled smart healthcare. ACM Trans. Multimed. 18(1), 1–20 (2022). https://doi.org/10.1145/3468506

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this manuscript.

Corresponding author

Correspondence to Harish Garg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vimala, J., Garg, H. & Jeevitha, K. Prognostication of Myocardial Infarction Using Lattice Ordered Linear Diophantine Multi-fuzzy Soft Set. Int. J. Fuzzy Syst. 26, 44–59 (2024). https://doi.org/10.1007/s40815-023-01574-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01574-2

Keywords