Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Revealing hidden supercooled liquid states in Al-based metallic glasses by ultrafast scanning calorimetry: Approaching theoretical ceiling of liquid fragility

超快扫描量热揭示铝基金属玻璃过冷液态: 接近 液体脆度的理论极限

  • Letter
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

铝基非晶合金具有密度低、强度高、耐腐蚀等诸多优异性 能; 然而, 铝基非晶合金形成能力差, 一般需要非常高的冷却速率, 这限制了铝基非晶合金应用. 玻璃形成理论认为形成能力与过冷 液体密切相关. 但在一般升温测量时, 铝基非晶合金不显示玻璃转 变或过冷液体, 而是直接变成晶态. 目前为止, 关于铝基非晶合金的 玻璃转变和过冷液体属性仍然是未知的. 本文采用超快速差热分 析方法(Flash DSC)使得升温速度达到10000 K s−1, 测量了20余种 常见铝基非晶合金的玻璃转变行为和过冷液体特征. 发现铝基非 晶合金普遍具有很高的液体脆度系数(m), 其中某些成分m>160, 已经接近理论上预测的脆度系数上限m∼175. 通过系统研究这些成 分的形成能力, 发现铝基非晶合金的玻璃形成能力与脆度系数成 反相关, 而且这种相关不是线性的. 只有m>100时, 降低m才会对玻 璃形成能力有明显影响; 相反, m>100的玻璃形成力普遍较弱, 而且 随m变化不显著. 因此, 过高的液体脆度系数可能是铝基非晶合金 形成能力差的一个重要原因.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Johnson WL. Bulk glass-forming metallic alloys: Science and technology. MRS Bull, 1999, 24: 42–56

    CAS  Google Scholar 

  2. Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog Mater Sci, 2012, 57: 487–656

    CAS  Google Scholar 

  3. Schroers J, Hodges TM, Kumar G, et al. Thermoplastic blow molding of metals. Mater Today, 2011, 14: 14–19

    Google Scholar 

  4. Hirata A, Guan P, Fujita T, et al. Direct observation of local atomic order in a metallic glass. Nat Mater, 2011, 10: 28–33

    CAS  Google Scholar 

  5. Schroers J. Bulk metallic glasses. Phys Today, 2013, 66: 32–37

    CAS  Google Scholar 

  6. Liu W, Zhang H, Shi JA, et al. A room-temperature magnetic semiconductor from a ferromagnetic metallic glass. Nat Commun, 2016, 7: 13497

    CAS  Google Scholar 

  7. Hu F, Zhu S, Chen S, et al. Amorphous metallic NiFeP: A conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv Mater, 2017, 29: 1606570

    Google Scholar 

  8. Sarac B, Ivanov YP, Chuvilin A, et al. Origin of large plasticity and multiscale effects in iron-based metallic glasses. Nat Commun, 2018, 9: 1333

    Google Scholar 

  9. Zhu F, Song S, Reddy KM, et al. Spatial heterogeneity as the structure feature for structure-property relationship of metallic glasses. Nat Commun, 2018, 9: 3965

    Google Scholar 

  10. Yu HB, Wang WH, Samwer K. The β relaxation in metallic glasses: An overview. Mater Today, 2013, 16: 183–191

    CAS  Google Scholar 

  11. Zeng Q, Sheng H, Ding Y, et al. Long-range topological order in metallic glass. Science, 2011, 332: 1404–1406

    CAS  Google Scholar 

  12. Sun Y, Concustell A, Greer AL. Thermomechanical processing of metallic glasses: Extending the range of the glassy state. Nat Rev Mater, 2016, 1: 16039

    CAS  Google Scholar 

  13. Hechler S, Ruta B, Stolpe M, et al. Microscopic evidence of the connection between liquid-liquid transition and dynamical crossover in an ultraviscous metallic glass former. Phys Rev Mater, 2018, 2: 085603

    CAS  Google Scholar 

  14. Giordano VM, Ruta B. Unveiling the structural arrangements responsible for the atomic dynamics in metallic glasses during physical aging. Nat Commun, 2016, 7: 10344

    CAS  Google Scholar 

  15. Ketkaew J, Chen W, Wang H, et al. Mechanical glass transition revealed by the fracture toughness of metallic glasses. Nat Commun, 2018, 9: 3271

    Google Scholar 

  16. Lüttich M, Giordano VM, Le Floch S, et al. Anti-aging in ultra-stable metallic glasses. Phys Rev Lett, 2018, 120: 135504

    Google Scholar 

  17. Zhao SF, Wang PF, Cheng X, et al. Anomalous low-temperature transport property of oxygen containing high-entropy Ti-Zr-Hf-Cu-Ni metallic glass thin films. Sci China Mater, 2019, 62: 907–912

    Google Scholar 

  18. Greer AL. Metallic glasses…on the threshold. Mater Today, 2009, 12: 14–22

    CAS  Google Scholar 

  19. Gross O, Riegler SS, Stolpe M, et al. On the high glass-forming ability of Pt-Cu-Ni/Co-P-based liquids. Acta Mater, 2017, 141: 109–119

    CAS  Google Scholar 

  20. Frey M, Busch R, Possart W, et al. On the thermodynamics, kinetics, and sub-T g relaxations of Mg-based bulk metallic glasses. Acta Mater, 2018, 155: 117–127

    CAS  Google Scholar 

  21. Li MX, Zhao SF, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods. Nature, 2019, 569: 99–103

    CAS  Google Scholar 

  22. Li Y, Zhao S, Liu Y, et al. How many bulk metallic glasses are there? ACS Comb Sci, 2017, 19: 687–693

    CAS  Google Scholar 

  23. Yang BJ, Yao JH, Chao YS, et al. Developing aluminum-based bulk metallic glasses. Philos Mag, 2010, 90: 3215–3231

    CAS  Google Scholar 

  24. Jiang JZ, Hofmann D, Jarvis DJ, et al. Low-density high-strength bulk metallic glasses and their composites: A review. Adv Eng Mater, 2015, 17: 761–780

    CAS  Google Scholar 

  25. Suryanarayana C, Inoue A. Iron-based bulk metallic glasses. Int Mater Rev, 2013, 58: 131–166

    CAS  Google Scholar 

  26. Li HX, Lu ZC, Wang SL, et al. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications. Prog Mater Sci, 2019, 103: 235–318

    CAS  Google Scholar 

  27. Shen Y, Perepezko JH. Al-based amorphous alloys: Glass-forming ability, crystallization behavior and effects of minor alloying additions. J Alloys Compd, 2017, 707: 3–11

    CAS  Google Scholar 

  28. Na JH, Demetriou MD, Floyd M, et al. Compositional landscape for glass formation in metal alloys. Proc Natl Acad Sci USA, 2014, 111: 9031–9036

    CAS  Google Scholar 

  29. He Y, Poon SJ, Shiflet GJ. Synthesis and properties of metallic glasses that contain aluminum. Science, 1988, 241: 1640–1642

    CAS  Google Scholar 

  30. Wu NC, Zuo L, Wang JQ, et al. Designing aluminum-rich bulk metallic glasses via electronic-structure-guided microalloying. Acta Mater, 2016, 108: 143–151

    CAS  Google Scholar 

  31. Yang BJ, Lu WY, Zhang JL, et al. Melt fluxing to elevate the forming ability of Al-based bulk metallic glasses. Sci Rep, 2017, 7: 11053

    CAS  Google Scholar 

  32. Lou HB, Wang XD, Xu F, et al. 73 mm-diameter bulk metallic glass rod by copper mould casting. Appl Phys Lett, 2011, 99: 051910

    Google Scholar 

  33. Nishiyama N, Takenaka K, Miura H, et al. The world’s biggest glassy alloy ever made. Intermetallics, 2012, 30: 19–24

    CAS  Google Scholar 

  34. Li Y, Guo Q, Kalb JA, et al. Matching glass-forming ability with the density of the amorphous phase. Science, 2008, 322: 1816–1819

    CAS  Google Scholar 

  35. Ren F, Ward L, Williams T, et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci Adv, 2018, 4: eaaq1566

    Google Scholar 

  36. Sun Y, Zhang F, Yang L, et al. Effects of dopants on the glass forming ability in Al-based metallic alloy. Phys Rev Mater, 2019, 3: 023404

    CAS  Google Scholar 

  37. Angell CA. Formation of glasses from liquids and biopolymers. Science, 1995, 267: 1924–1935

    CAS  Google Scholar 

  38. Orava J, Greer AL, Gholipour B, et al. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat Mater, 2012, 11: 279–283

    CAS  Google Scholar 

  39. Wei S, Evenson Z, Stolpe M, et al. Breakdown of the Stokes-Ein-stein relation above the melting temperature in a liquid phase-change material. Sci Adv, 2018, 4: eaat8632

    CAS  Google Scholar 

  40. Mauro NA, Blodgett M, Johnson ML, et al. A structural signature of liquid fragility. Nat Commun, 2014, 5: 4616

    CAS  Google Scholar 

  41. Wang LM, Mauro JC. An upper limit to kinetic fragility in glass-forming liquids. J Chem Phys, 2011, 134: 044522

    Google Scholar 

  42. Johnson WL, Na JH, Demetriou MD. Quantifying the origin of metallic glass formation. Nat Commun, 2016, 7: 10313

    CAS  Google Scholar 

  43. Zheng Q, Zhang Y, Montazerian M, et al. Understanding glass through differential scanning calorimetry. Chem Rev, 2019, 119: 7848–7939

    CAS  Google Scholar 

  44. Hu L, Bian X, Wang W, et al. Liquid fragility and characteristic of the structure corresponding to the prepeak of AlNiCe amorphous alloys. Acta Mater, 2004, 52: 4773–4781

    CAS  Google Scholar 

  45. Pogatscher S, Leutenegger D, Schawe JEK, et al. Solid-solid phase transitions via melting in metals. Nat Commun, 2016, 7: 11113

    CAS  Google Scholar 

  46. Wang JQ, Shen Y, Perepezko JH, et al. Increasing the kinetic stability of bulk metallic glasses. Acta Mater, 2016, 104: 25–32

    CAS  Google Scholar 

  47. Bai FX, Yao JH, Wang YX, et al. Crystallization kinetics of an Au-based metallic glass upon ultrafast heating and cooling. Scripta Mater, 2017, 132: 58–62

    CAS  Google Scholar 

  48. Zhao B, Yang B, Abyzov AS, et al. Beating homogeneous nuclea-tion and tuning atomic ordering in glass-forming metals by na-nocalorimetry. Nano Lett, 2017, 17: 7751–7760

    CAS  Google Scholar 

  49. Kurtuldu G, Shamlaye KF, Löffler JF. Metastable quasicrystal-induced nucleation in a bulk glass-forming liquid. Proc Natl Acad Sci USA, 2018, 115: 6123–6128

    CAS  Google Scholar 

  50. Shen Y, Perepezko JH. Investigation of the nucleation delay time in Al-based metallic glasses by high rate calorimetry. J Non-Crystalline Solids, 2018, 502: 9–14

    CAS  Google Scholar 

  51. Schawe JEK, Löffler JF. Existence of multiple critical cooling rates which generate different types of monolithic metallic glass. Nat Commun, 2019, 10: 1337

    Google Scholar 

  52. Spieckermann F, Steffny I, Bian X, et al. Fast and direct determination of fragility in metallic glasses using chip calorimetry. He-liyon, 2019, 5: e01334

    Google Scholar 

  53. Gao Y, Zhao B, Vlassak JJ, et al. Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibrium conditions. Prog Mater Sci, 2019, 104: 53–137

    CAS  Google Scholar 

  54. Yang B, Schmelzer JWP, Zhao B, et al. Glass transition and primary crystallization of Al86Ni6Y4.5Co2La1.5 metallic glass at heating rates spanning over six orders of magnitude. Scripta Mater, 2019, 162: 146–150

    CAS  Google Scholar 

  55. Gao M, Perepezko JH Al-based amorphous metallic plastics. Adv Eng Mater, 2019, 21: 1800930

    Google Scholar 

  56. Senkov ON. Correlation between fragility and glass-forming ability of metallic alloys Phys Rev B, 2007, 76: 104202

    Google Scholar 

  57. Evenson Z, Gallino I, Busch R The effect of cooling rates on the apparent fragility of Zr-based bulk metallic glasses J Appl Phys, 2010, 107: 123529

    Google Scholar 

  58. Wang LM, Angell CA, Richert R Fragility and thermodynamics in nonpolymeric glass-forming liquids J Chem Phys, 2006, 125: 074505

    Google Scholar 

  59. Novikov VN, Sokolov AP. Correlation of fragility and Poisson’s ratio: Difference between metallic and nonmetallic glass formers. Phys Rev B, 2006, 74: 064203

    Google Scholar 

  60. Mukherjee S, Schroers J, Zhou Z, et al. Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Mater, 2004, 52: 3689–3695

    CAS  Google Scholar 

  61. Xie SJ, Schweizer KS. Nonuniversal coupling ofcage scale hopping and collective elastic distortion as the origin of dynamic fragility diversity in glass-forming polymer liquids. Macromolecules, 2016, 49: 9655–9664

    CAS  Google Scholar 

  62. Dalle-Ferrier C, Kisliuk A, Hong L, et al. Why many polymers are so fragile: A new perspective. J Chem Phys, 2016, 145: 154901

    CAS  Google Scholar 

  63. Ding J, Cheng YQ, Sheng H, et al. Short-range structural signature of excess specific heat and fragility of metallic-glass-forming supercooled liquids. Phys Rev B, 2012, 85: 060201

    Google Scholar 

  64. Wei S, Stolpe M, Gross O, et al. Linking structure to fragility in bulk metallic glass-forming liquids. Appl Phys Lett, 2015, 106: 181901

    Google Scholar 

  65. Krausser J, Samwer KH, Zaccone A. Interatomic repulsion softness directly controls the fragility of supercooled metallic melts. Proc Natl Acad Sci USA, 2015, 112: 13762–13767

    CAS  Google Scholar 

  66. Pueblo CE, Sun M, Kelton KF. Strength of the repulsive part of the interatomic potential determines fragility in metallic liquids. Nat Mater, 2017, 16: 792–796

    CAS  Google Scholar 

  67. Shintani H, Tanaka H. Frustration on the way to crystallization in glass. Nat Phys, 2006, 2: 200–206

    CAS  Google Scholar 

  68. Kawasaki T, Araki T, Tanaka H. Correlation between dynamic heterogeneity and medium-range order in two-dimensional glass-forming liquids. Phys Rev Lett, 2007, 99: 215701

    Google Scholar 

  69. Sheng HW, Cheng YQ, Lee PL, et al. Atomic packing in multi-component aluminum-based metallic glasses. Acta Mater, 2008, 56: 6264–6272

    CAS  Google Scholar 

  70. Sun Y, Zhang F, Ye Z, et al. ‘Crystal genes’ in metallic liquids and glasses. Sci Rep, 2016, 6: 23734

    CAS  Google Scholar 

Download references

Acknowledgements

Discussions with Dr. Shi-Yu Liu and Dr. Yang Sun are appreciated. We thank the supports from the National Thousand Young Talents Program of China.

Author information

Authors and Affiliations

Authors

Contributions

Yu HB directed the research. Yang Q conducted the experiments. All authors contributed to experimental design, data analysis, and interpretation. Yang Q and Yu HB wrote the manuscript.

Corresponding author

Correspondence to Hai-Bin Yu  (于海滨).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Qun Yang received his Bachelor’s degree from Fuyang Normal University in 2016 and is pursuing PhD degree at Huazhong University of Science and Technology (HUST). His research interest mainly focuses on the relaxation of glass materials, the properties of glass formers and the nature of glass transition.

Hai-Bin Yu is currently a professor at HUST. His research interest mainly focuses on the physical properties of metallic glasses and the relaxation dynamics of disordered systems.

Supplementary Materials for

40843_2019_9478_MOESM1_ESM.pdf

Revealing hidden supercooled liquid states in Albased metallic glasses by ultrafast scanning calorimetry: Approaching theoretical ceiling of liquid fragility

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Huang, J., Qin, XH. et al. Revealing hidden supercooled liquid states in Al-based metallic glasses by ultrafast scanning calorimetry: Approaching theoretical ceiling of liquid fragility. Sci. China Mater. 63, 157–164 (2020). https://doi.org/10.1007/s40843-019-9478-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-9478-3