Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Raman Spectroscopy of cultural heritage Materials: Overview of Applications and New Frontiers in Instrumentation, Sampling Modalities, and Data Processing

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Rooted in the long tradition of Raman spectroscopy of cultural heritage materials, in this work we provide a personal perspective on recent applications and new frontiers in sampling modalities, data processing, and instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aceto M, Agostino A, Boccaleri E, Crivello F, Cerutti Garlanda A (2010) Identification of copper carboxylates as degradation residues on an ancient manuscript. J Raman Spectrosc 41:1434–1440. doi:10.1002/jrs.2650

    Article  CAS  Google Scholar 

  2. Aceto M, Agostino A, Boccaleri E, Crivello F, Garlanda AC (2006) Evidence for the degradation of an alloy pigment on an ancient Italian manuscript. J Raman Spectrosc 37:1160–1170. doi:10.1002/jrs.1604

    Article  CAS  Google Scholar 

  3. Aceto M, Agostino A, Fenoglio G, Gulmini M, Bianco V, Pellizzi E (2012) Non invasive analysis of miniature paintings: proposal for an analytical protocol. Spectrochim Acta A 91:352–359. doi:10.1016/j.saa.2012.02.021

    Article  CAS  Google Scholar 

  4. Aceto M, Agostino A, Fenoglio G, Idone A, Gulmini M, Picollo M, Ricciardi P, Delaney JK (2014) Characterisation of colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR reflectance spectrophotometry. Anal Methods 6:1488–1500. doi:10.1039/c3ay41904e

    Article  CAS  Google Scholar 

  5. Aceto M, Arrais A, Marsano F, Agostino A, Fenoglio G, Idone A, Gulmini M (2015) A diagnostic study on folium and orchil dyes with non-invasive and micro-destructive methods. Spectrochim Acta A 142:159–168. doi:10.1016/j.saa.2015.02.001

    Article  CAS  Google Scholar 

  6. Akhtar W, Edwards HGM (1997) Fourier-transform Raman spectroscopy of mammalian and avian keratotic biopolymers. Spectrochim Acta A 53:81–90. doi:10.1016/S1386-1425(97)83011-9

    Google Scholar 

  7. Allen V, Kalivas JH, Rodriguez RG (1999) Post-consumer plastic identification using Raman spectroscopy. Appl Spectrosc 53:672–681

    Article  CAS  Google Scholar 

  8. Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805–3821. doi:10.1039/b900654k

    Article  CAS  Google Scholar 

  9. Andò S, Bersani D, Vignola P, Garzanti E (2009) Raman spectroscopy as an effective tool for high-resolution heavy-mineral analysis: examples from major Himalayan and Alpine fluvio-deltaic systems. Spectrochim Acta A 73:450–455

    Article  CAS  Google Scholar 

  10. Aramendia J, Gomez-Nubla L, Bellot-Gurlet L, Castro K, Paris C, Colomban P, Madariaga JM (2014) Protective ability index measurement through Raman quantification imaging to diagnose the conservation state of weathering steel structures. J Raman Spectrosc 45:1076–1084

    Article  CAS  Google Scholar 

  11. Aramendia J, Gomez-Nubla L, Castro K, Martinez-Arkarazo I, Vega D, López Sanz, de Heredia A, Ibáñez García, de Opakua A, Madariaga JM (2012) Portable Raman study on the conservation state of four CorTen steel-based sculptures by Eduardo Chillida impacted by urban atmospheres. J Raman Spectrosc 43:1111–1117. doi:10.1002/jrs.3158

    Article  CAS  Google Scholar 

  12. Arslanoglu J, Zaleski S, Loike J (2011) An improved method of protein localization in artworks through SERS nanotag-complexed antibodies. Anal Bioanal Chem 399:2997–3010. doi:10.1007/s00216-010-4378-0

    Article  CAS  Google Scholar 

  13. Baert K, Meulebroeck W, Wouters H, Cosyns P, Nys K, Thienpont H, Terryn H (2011) Using Raman spectroscopy as a tool for the detection of iron in glass. J Raman Spectrosc 42:1789–1795

    Article  CAS  Google Scholar 

  14. Barone G, Bersani D, Jehlička J, Lottici PP, Mazzoleni P, Raneri S, Vandenabeele P, Di Giacomo C, Larinà G (2015) Nondestructive investigation on the 17–18th centuries Sicilian jewelry collection at the Messina regional museum using mobile Raman equipment. J Raman Spectrosc 46:989–995

    Article  CAS  Google Scholar 

  15. Barry BW, Edwards HGM, Williams AC (1992) Fourier transform Raman and IR vibrational study of human skin: assignment of spectral bands. J Raman Spectrosc 23:641–645. doi:10.1002/jrs.1250231113

    Article  CAS  Google Scholar 

  16. Bell IM, Clark RJH, Gibbs PJ (1997) Raman spectroscopic library of natural and synthetic pigments (pre- ≈1850 AD). Spectrochim Acta A 53:2159–2179. doi:10.1016/S1386-1425(97)00140-6

    Article  Google Scholar 

  17. Bellot-Gurlet L, Le Bourdonnec F-X, Poupeau G, Dubernet S (2004) Raman micro-spectroscopy of western Mediterranean obsidian glass: one step towards provenance studies? J Raman Spectrosc 35:671–677

    Article  CAS  Google Scholar 

  18. Bellot-Gurlet L, Neff D, Reguer S, Monnier J, Saheb M, Dillmann P (2009) Raman studies of corrosion layers formed on archaeological irons in various media. J Nano Res 8:147–156

    Article  CAS  Google Scholar 

  19. Bell SEJ, Bourguignon ESO, Dennis A (1998) Analysis of luminescent samples using subtracted shifted Raman spectroscopy. Analyst 123:1729–1734

    Article  CAS  Google Scholar 

  20. Benedetti DP, Zhang J, Tague TJ, Lombardi JR, Leona M (2014) In situ microanalysis of organic colorants by inkjet colloid deposition surface-enhanced Raman scattering. J Raman Spectrosc 45:123–127. doi:10.1002/jrs.4424

    Article  CAS  Google Scholar 

  21. Bergamonti L, Bersani D, Mantovan S, Lottici PP (2013) Micro-Raman investigation of pigments and carbonate phases in corals and molluscan shells. Eur J Miner 25:845–853

    Article  CAS  Google Scholar 

  22. Bersani D, Andò S, Vignola P, Moltifiori G, Marino I-G, Lottici PP, Diella V (2009) Micro-Raman spectroscopy as a routine tool for garnet analysis. Spectrochim Acta A 73:484–491

    Article  CAS  Google Scholar 

  23. Bersani D, Azzi G, Lambruschi E, Barone G, Mazzoleni P, Raneri S, Longobardo U, Lottici PP (2014) Characterization of emeralds by micro-Raman spectroscopy. J Raman Spectrosc 45:1293–1300

    Article  CAS  Google Scholar 

  24. Bersani D, Lottici PP (2010) Applications of Raman spectroscopy to gemology. Anal Bioanal Chem 397:2631–2646. doi:10.1007/s00216-010-3700-1

    Article  CAS  Google Scholar 

  25. Bersani D, Lottici PP, Virgenti S, Sodo A, Malvestuto G, Botti A, Salvioli-Mariani E, Tribaudino M, Ospitali F, Catarsi M (2010) Multi-technique investigation of archaeological pottery from Parma (Italy). J Raman Spectrosc 41:1556–1561

    Article  CAS  Google Scholar 

  26. Bicchieri M, Monti M, Piantanida G, Sodo A (2008) All that is iron-ink is not always iron-gall! J Raman Spectrosc 39:1074–1078. doi:10.1002/jrs.1995

    Article  CAS  Google Scholar 

  27. Bicchieri M, Monti M, Piantanida G, Sodo A (2013) Non-destructive spectroscopic investigation on historic Yemenite scriptorial fragments: evidence of different degradation and recipes for iron tannic inks. Anal Bioanal Chem 405:2713–2721. doi:10.1007/s00216-012-6681-4

    Article  CAS  Google Scholar 

  28. Bouchard M, Gambardella A (2010) Raman microscopy study of synthetic cobalt blue spinels used in the field of art. J Raman Spectrosc 41:1477–1485. doi:10.1002/jrs.2645

    Article  CAS  Google Scholar 

  29. Bouchard M, Smith DC (2003) Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochim Acta A 59:2247–2266

    Article  CAS  Google Scholar 

  30. Brambilla A, Osticioli I, Nevin A, Comelli D, D’Andrea C, Lofrumento C, Valentini G, Cubeddu R (2011) A remote scanning Raman spectrometer for in situ measurements of works of art. Rev Sci Instrum 82:063109. doi:10.1063/1.3600565

    Article  CAS  Google Scholar 

  31. Braz A, Lopez-Lopez M, Garcia-Ruiz C (2013) Raman spectroscopy for forensic analysis of inks in questioned documents. Forensic Sci Int 232:206–212. doi:10.1016/j.forsciint.2013.07.017

    Article  CAS  Google Scholar 

  32. Brody RH, Edwards HGM, Pollard AM (2001) A study of amber and copal samples using FT-Raman spectroscopy. Spectrochim Acta A 57:1325–1338

    Article  CAS  Google Scholar 

  33. Brody RH, Edwards HGM, Pollard AM (2002) Fourier transform-Raman spectroscopic study of natural resins of archaeological interest. Biopolymers 67:129–141

    Article  CAS  Google Scholar 

  34. Bronzato M, Zoleo A, Biondi B, Centeno SA (2016) An insight into the metal coordination and spectroscopic properties of artistic Fe and Fe/Cu logwood inks. Spectrochim Acta Part 153:522–529. doi:10.1016/j.saa.2015.08.042

    Article  CAS  Google Scholar 

  35. Brosseau CL, Casadio F, Van Duyne RP (2011) Revealing the invisible: using surface-enhanced Raman spectroscopy to identify minute remnants of color in Winslow Homer’s colorless skies. J Raman Spectrosc 42:1305–1310. doi:10.1002/jrs.2877

    Article  CAS  Google Scholar 

  36. Brosseau CL, Gambardella A, Casadio F, Grzywacz CM, Wouters J, Van Duyne RP (2009) Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis. Anal Chem 81:3056–3062. doi:10.1021/ac802761v

    Article  CAS  Google Scholar 

  37. Brosseau CL, Rayner KS, Casadio F, Grzywacz CM, van Duyne RP (2009) Surface-enhanced Raman spectroscopy: a direct method to identity colorants in various artist media. Anal Chem 81:7443–7447

    Article  CAS  Google Scholar 

  38. Bruni S, Cariati F, Bianchi CL, Zanardini E, Sorlini C (1995) Spectroscopic investigation of red stains affecting the Carrara marble façade of the certosa of pavia. Archaeometry 37:249–255. doi:10.1111/j.1475-4754.1995.tb00741.x

    Article  CAS  Google Scholar 

  39. Bruni S, De Luca E, Guglielmi V, Pozzi F (2011) Identification of natural dyes on laboratory-dyed wool and ancient wool, silk, and cotton fibers using attenuated total reflection (ATR) Fourier transform IR (FT-IR) spectroscopy and Fourier transform Raman spectroscopy. Appl Spectrosc 65:1017–1023. doi:10.1366/10-06203

    Article  CAS  Google Scholar 

  40. Bruni S, Guglielmi V, Pozzi F (2011) Historical organic dyes: a surface-enhanced Raman scattering (SERS) spectral database on Ag Lee-Meisel colloids aggregated by NaClO4. J Raman Spectrosc 42:1267–1281. doi:10.1002/jrs.2872

    Article  CAS  Google Scholar 

  41. Bruni S, Guglielmi V, Pozzi F (2010) Surface-enhanced Raman spectroscopy (SERS) on silver colloids for the identification of ancient textile dyes: tyrian purple and madder. J Raman Spectrosc 41:175–180. doi:10.1002/jrs.2456

    CAS  Google Scholar 

  42. Buckley K, Matousek P (2011) Non-invasive analysis of turbid samples using deep Raman spectroscopy. Analyst 136:3039–3050. doi:10.1039/c0an00723d

    Article  CAS  Google Scholar 

  43. Burgio L, Clark RJ (2001) Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim Acta A 57:1491–1521. doi:10.1016/S1386-1425(00)00495-9

    Article  CAS  Google Scholar 

  44. Burgio L, Clark RJH, Firth S (2001) Raman spectroscopy as a means for the identification of plattnerite (PbO2), of lead pigments and of their degradation products. Analyst 126:222–227. doi:10.1039/B008302J

    Article  CAS  Google Scholar 

  45. Burgio L, Clark RJH, Hark RR (2010) Raman microscopy and X-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings. Proc Natl Acad Sci USA 107:5726–5731. doi:10.1073/pnas.0914797107

    Article  CAS  Google Scholar 

  46. Burgio L, Clark RJH, Hark RR (2009) Spectroscopic investigation of modern pigments on purportedly medieval miniatures by the “Spanish Forger”. J Raman Spectrosc 40:2031–2036. doi:10.1002/jrs.2364

    Article  CAS  Google Scholar 

  47. Burgio L, Clark RJH, Muralha VSF, Stanley T (2008) Pigment analysis by Raman microscopy of the non-figurative illumination in 16th- to 18th-century Islamic manuscripts. J Raman Spectrosc 39:1482–1493. doi:10.1002/jrs.2027

    Article  CAS  Google Scholar 

  48. Buzzini P, Suzuki E (2015) Forensic applications of Raman spectroscopy for the in situ analyses of pigments and dyes in ink and paint evidence. J Raman Spectrosc. doi:10.1002/jrs.4818

    Google Scholar 

  49. Cañamares MV, Chenal C, Birke RL, Lombardi JR (2008) DFT, SERS, and single-molecule SERS of crystal violet. J Phys Chem C 112:20295–20300. doi:10.1021/jp807807j

    Article  CAS  Google Scholar 

  50. Cañamares MV, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S (2004) Surface-enhanced Raman scattering study of the adsorption of the anthraquinone pigment alizarin on Ag nanoparticles. J Raman Spectrosc 35:921–927. doi:10.1002/jrs.1228

    Article  CAS  Google Scholar 

  51. Cañamares MV, Garcia-Ramos JV, Gomez-Varga JD, Domingo C, Sanchez-Cortes S (2007) Ag nanoparticles prepared by laser photoreduction as substrates for in situ surface-enhanced raman scattering analysis of dyes. Langmuir 23:5210–5215. doi:10.1021/la063445v

    Article  CAS  Google Scholar 

  52. Cañamares MV, Lombardi JR, Leona M (2008) Surface-enhanced Raman scattering of protoberberine alkaloids. J Raman Spectrosc 39:1907–1914. doi:10.1002/jrs.2057

    Article  CAS  Google Scholar 

  53. Cañamares MV, Reagan DA, Lombardi JR, Leona M (2014) TLC-SERS of mauve, the first synthetic dye. J Raman Spectrosc 45:1147–1152. doi:10.1002/jrs.4508

    Article  CAS  Google Scholar 

  54. Carrabba MM, Spencer KM, Rich C, Rauh D (1990) The utilization of a holographic Bragg diffraction filter for Rayleigh line rejection in Raman spectroscopy. Appl Spectrosc 44:1558–1561

    Article  CAS  Google Scholar 

  55. Casadio F, Bezur A, Fiedler I, Muir K, Trad T, Maccagnola S (2012) Pablo Picasso to Jasper Johns: a Raman study of cobalt-based synthetic inorganic pigments. J Raman Spectrosc 43:1761–1771. doi:10.1002/jrs.4081

    Article  CAS  Google Scholar 

  56. Casadio F, Douglas JG, Faber KT (2007) Noninvasive methods for the investigation of ancient Chinese jades: an integrated analytical approach. Anal Bioanal Chem 387:791–801. doi:10.1007/s00216-006-0684-y

    Article  CAS  Google Scholar 

  57. Casadio F, Leona M, Lombardi JR, Van Duyne R (2010) Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Acc Chem Res 43:782–791. doi:10.1021/ar100019q

    Article  CAS  Google Scholar 

  58. Casanova Municchia A, Micheli M, Ricci MA, Toledo M, Bellatreccia F, Mastro SL, Sodo A (2016) Raman, SEM-EDS and XRPD investigations on pre-Columbian Central America “estucado” pottery. Spectrochim Acta A 156:47–53

    Article  CAS  Google Scholar 

  59. Castanys M, Perez-Pueyo R, Soneira MJ, Golobardes E, Fornells A (2011) Identification of Raman spectra through a case-based reasoning system: application to artistic pigments. J Raman Spectrosc 42:1553–1561

    Article  CAS  Google Scholar 

  60. Castro K, Perez-Alonso M, Rodri-guez-Laso MD, Fernandez LA, Madariaga JM (2005) On-line FT-Raman and dispersive Raman spectra database of artists’ materials (e-VISART database). Anal Bioanal Chem 382:248–258

    Article  CAS  Google Scholar 

  61. Centeno SA (2016) Identification of artistic materials in paintings and drawings by Raman spectroscopy: some challenges and future outlook. J Raman Spectrosc 47:9–15. doi:10.1002/jrs.4767

    Article  CAS  Google Scholar 

  62. Centeno SA, Bronzato M, Ropret P, Zoleo A, Venzo A, Bogialli S, Badocco D (2016) Composition and spectroscopic properties of historic Cr logwood inks. J Raman Spectrosc. doi:10.1002/jrs.4938

    Google Scholar 

  63. Centeno SA, Buisan VL, Ropret P (2006) Raman study of synthetic organic pigments and dyes in early lithographic inks (1890–1920). J Raman Spectrosc 37:1111–1118. doi:10.1002/jrs.1594

    Article  CAS  Google Scholar 

  64. Centeno SA, Meller T, Kennedy N, Wypyski M (2008) The daguerreotype surface as a SERS substrate: characterization of image deterioration in plates from the 19th century studio of Southworth & Hawes. J Raman Spectrosc 39:914–921. doi:10.1002/jrs.1934

    Article  CAS  Google Scholar 

  65. Centeno SA, Ropret P, Federico ED, Shamir J, Itin B, Jerschow A (2010) Characterization of Al(III) complexes with hematein in artistic alum logwood inks. J Raman Spectrosc 41:445–451. doi:10.1002/jrs.2455

    CAS  Google Scholar 

  66. Centeno SA, Shamir J (2008) Surface enhanced Raman scattering (SERS) and FTIR characterization of the sepia melanin pigment used in works of art. J Mol Struct 873:149–159. doi:10.1016/j.molstruc.2007.03.026

    Article  CAS  Google Scholar 

  67. Cesaratto A, Leona M, Lombardi JR, Comelli D, Nevin A, Londero P (2014) Detection of organic colorants in historical painting layers using UV laser ablation surface-enhanced Raman microspectroscopy. Angew Chem Int Ed 53:14373–14377. doi:10.1002/anie.201408016

    Article  CAS  Google Scholar 

  68. Chalmers JM, Edwards HGM, Hargreaves MD (2012) IR and Raman spectroscopy in forensic science. Wiley, Chichester

    Book  Google Scholar 

  69. Chaplin TD, Clark RJH, Jacobs D, Jensen K, Smith GD (2005) The Gutenberg bibles: analysis of the illuminations and inks using Raman spectroscopy. Anal Chem 77:3611–3622. doi:10.1021/ac050346y

    Article  CAS  Google Scholar 

  70. Chaplin TD, Clark RJH, Scott DA (2006) Study by Raman microscopy of nine variants of the green–blue pigment verdigris. J Raman Spectrosc 37:223–229. doi:10.1002/jrs.1469

    Article  CAS  Google Scholar 

  71. Chaplin TD, Clark RJH, Singer BW (2014) Early 20th C Russian painting? Raman identification of modern pigments on a pastel supposedly Painted by the renowned artist Natalia Goncharova. J Raman Spectrosc 45:1322–1325. doi:10.1002/jrs.4569

    Article  CAS  Google Scholar 

  72. Chen T-H (2008) A Raman spectroscopic study of heat-treated nephrite. Phase Transit 81:205–216

    Article  CAS  Google Scholar 

  73. Christensen M, Frosch M, Jensen P, Schnell U, Shashoua Y, Nielsen OF (2006) Waterlogged archaeological wood—chemical changes by conservation and degradation. J Raman Spectrosc 37:1171–1178. doi:10.1002/jrs.1589

    Article  CAS  Google Scholar 

  74. Christensen M, Nielsen OF, Jensen P, Schnell U (2005) Water structure in polyethylene glycols for preservation of wooden artefacts. A NIR-FT-Raman spectroscopic investigation. J Mol Struct 735–736:267–270. doi:10.1016/j.molstruc.2004.10.090

    Article  CAS  Google Scholar 

  75. Cianchetta I, Maish J, Saunders D, Walton M, Mehta A, Foran B, Trentelman K (2015) Investigating the firing protocol of Athenian pottery production: a Raman study of replicate and ancient sherds. J Raman Spectrosc 46:996–1002

    Article  CAS  Google Scholar 

  76. Ciliberto E, Spoto G (2000) Modern analytical methods in art and archaeology. Wiley, New York

    Google Scholar 

  77. Clark RJH (2007) The scientific investigation of artwork and archaeological artefacts: Raman microscopy as a structural, analytical and forensic tool. Appl Phys A 89:833–840. doi:10.1007/s00339-007-4212-5

    Article  CAS  Google Scholar 

  78. Clark RJH (1995) Raman microscopy: application to the identification of pigments on medieval manuscripts. Chem Soc Rev 24:187–196. doi:10.1039/CS9952400187

    Article  CAS  Google Scholar 

  79. Clark RJH, Cridland L, Kariuki BM, Harris KDM, Withnall R (1995) Synthesis, structural characterisation and Raman spectroscopy of the inorganic pigments lead tin yellow types I and II and lead antimonate yellow: their identification on medieval paintings and manuscripts. J Chem Soc Dalton Trans. doi:10.1039/DT9950002577

    Google Scholar 

  80. Clark RJH, Wang Q, Correia A (2007) Can the Raman spectrum of anatase in artwork and archaeology be used for dating purposes? Identification by Raman microscopy of anatase in decorative coatings on Neolithic (Yangshao) pottery from Henan, China. J Archaeol Sci 34:1787–1793. doi:10.1016/j.jas.2006.12.018

    Article  Google Scholar 

  81. Coccato A, Jehlicka J, Moens L, Vandenabeele P (2015) Raman spectroscopy for the investigation of carbon-based black pigments. J Raman Spectrosc 46:1003–1015. doi:10.1002/jrs.4715

    Article  CAS  Google Scholar 

  82. Coccato A, Karampelas S, Wörle M, van Willigen S, Pétrequin P (2014) Gem quality and archeological green “jadeite jade” versus “omphacite jade”. J Raman Spectrosc. doi:10.1002/jrs.4512

    Google Scholar 

  83. Colomban P (2003) Polymerisation degree and Raman identification of ancient glasses used for jewelry, ceramic enamel and mosaics. J Non Cryst Solids 323:180–187

    Article  CAS  Google Scholar 

  84. Colomban P (2004) Raman spectrometry, a unique tool to analyze and classify ancient ceramics and glasses. Appl Phys A 79:167–170. doi:10.1007/s00339-004-2512-6

    Article  CAS  Google Scholar 

  85. Colomban P (2012) The on-site/remote Raman analysis with mobile instruments: a review of drawbacks and success in cultural heritage studies and other associated fields. J Raman Spectrosc 43:1529–1535

    Article  CAS  Google Scholar 

  86. Colomban P, Paulsen O (2005) Non-destructive determination of the structure and composition of glazes by Raman spectroscopy. J Am Ceram Soc 88:390–395. doi:10.1111/j.1551-2916.2005.00096.x

    Article  CAS  Google Scholar 

  87. Colomban P, Sagon G, Faurel X (2001) Differentiation of antique ceramics from the Raman spectra of their coloured glazes and paintings. J Raman Spectrosc 32:351–360. doi:10.1002/jrs.704

    Article  CAS  Google Scholar 

  88. Colomban P, Schreiber HD (2005) Raman signature modification induced by copper nanoparticles in silicate glass. J Raman Spectrosc 36:884–890

    Article  CAS  Google Scholar 

  89. Colomban P, Tournié A, Bellot-Gurlet L (2006) Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide. J Raman Spectrosc 37:841–852

    Article  CAS  Google Scholar 

  90. Colomban P, Treppoz F (2001) Identification and differentiation of ancient and modern European porcelains by Raman macro- and micro-spectroscopy†. J Raman Spectrosc 32:93–102. doi:10.1002/jrs.678

    Article  CAS  Google Scholar 

  91. Conti C, Aliatis I, Casati M, Colombo C, Matteini M, Negrotti R, Realini M, Zerbi G (2014) Diethyl oxalate as a new potential conservation product for decayed carbonatic substrates. J Cult Herit 15:336–338. doi:10.1016/j.culher.2013.08.002

    Article  Google Scholar 

  92. Conti C, Aliatis I, Colombo C, Greco M, Possenti E, Realini M, Castiglioni C, Zerbi G (2012) μ-Raman mapping to study calcium oxalate historical films. J Raman Spectrosc 43:1604–1611

    Article  CAS  Google Scholar 

  93. Conti C, Colombo C, Dellasega D, Matteini M, Realini M, Zerbi G (2011) Ammonium oxalate treatment: evaluation by mu-Raman mapping of the penetration depth in different plasters. J Cult Herit 12:372–379. doi:10.1016/j.culher.2011.03.004

    Article  Google Scholar 

  94. Conti C, Colombo C, Matteini M, Realini M, Zerbi G (2010) Micro-Raman mapping on polished cross-sections: a tool to define the penetration depth of conservation treatment on cultural heritage. J Raman Spectrosc 41:1254–1260

    Article  CAS  Google Scholar 

  95. Conti C, Colombo C, Realini M, Matousek P (2015) Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset Raman spectroscopy (micro-SORS). J Raman Spectrosc 46:476–482. doi:10.1002/jrs.4673

    Article  CAS  Google Scholar 

  96. Conti C, Colombo C, Realini M, Zerbi G, Matousek P (2014) Subsurface Raman analysis of thin painted layers. Appl Spectrosc 68:686–691. doi:10.1366/13-07376

    Article  CAS  Google Scholar 

  97. Conti C, Realini M, Botteon A, Colombo C, Noll S, Elliott SR, Matousek P (2016) Analytical capability of defocused µ-SORS in the chemical interrogation of thin turbid painted layers. Appl Spectrosc 70:156–161

    Article  CAS  Google Scholar 

  98. Conti C, Realini M, Colombo C, Matousek P (2015) Comparison of key modalities of micro-scale spatially offset Raman spectroscopy. Analyst 140:8127–8133. doi:10.1039/c5an01900a

    Article  CAS  Google Scholar 

  99. Conti C, Realini M, Colombo C, Sowoidnich K, Afseth NK, Bertasa M, Botteon A, Matousek P (2015) Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy. Anal Chem 87:5810–5815. doi:10.1021/acs.analchem.5b01080

    Article  CAS  Google Scholar 

  100. Conti C, Striova J, Aliatis I, Colombo C, Greco M, Possenti E, Realini M, Brambilla L, Zerbi G (2013) Portable Raman versus portable mid-FTIR reflectance instruments to monitor synthetic treatments used for the conservation of monument surfaces. Anal Bioanal Chem 405:1733–1741

    Article  CAS  Google Scholar 

  101. Conti C, Striova J, Aliatis I, Possenti E, Massonnet G, Muehlethaler C, Poli T, Positano M (2014) The detection of copper resinate pigment in works of art: contribution from Raman spectroscopy. J Raman Spectrosc 45:1186–1196. doi:10.1002/jrs.4455

    Article  CAS  Google Scholar 

  102. Cucci C, Bartolozzi G, Marchiafava V, Picollo M, Richardson E (2016) Study of semi-synthetic plastic objects of historic interest using non-invasive total reflectance FT-IR. Microchem J 124:889–897. doi:10.1016/j.microc.2015.06.010

    Article  CAS  Google Scholar 

  103. Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M (2015) Raman spectroscopy of lipids: a review. J Raman Spectrosc 46:4–20. doi:10.1002/jrs.4607

    Article  CAS  Google Scholar 

  104. Daher C, Bellot-Gurlet L (2013) Non-destructive characterization of archaeological resins: seeking alteration criteria through vibrational signatures. Anal Methods 5:6583–6591. doi:10.1039/C3AY41278D

    Article  CAS  Google Scholar 

  105. Daher C, Bellot-Gurlet L, Le Hô A-S, Paris C, Regert M (2013) Advanced discriminating criteria for natural organic substances of cultural heritage interest: spectral decomposition and multivariate analyses of FT-Raman and FT-IR signatures. Talanta 115:540–547. doi:10.1016/j.talanta.2013.06.014

    Article  CAS  Google Scholar 

  106. Daher C, Drieu L, Bellot-Gurlet L, Percot A, Paris C, Le Hô A-S (2014) Combined approach of FT-Raman, SERS and IR micro-ATR spectroscopies to enlighten ancient technologies of painted and varnished works of art. J Raman Spectrosc 45:1207–1214

    Article  CAS  Google Scholar 

  107. Daher C, Paris C, Le Ho A-S, Bellot-Gurlet L, Echard J-P (2010) A joint use of Raman and IR spectroscopies for the identification of natural organic media used in ancient varnishes. J Raman Spectrosc 41:1494–1499. doi:10.1002/jrs.2693

    Article  CAS  Google Scholar 

  108. Daher C, Pimenta V, Bellot-Gurlet L (2014) Towards a non-invasive quantitative analysis of the organic components in museum objects varnishes by vibrational spectroscopies: methodological approach. Talanta 129:336–345. doi:10.1016/j.talanta.2014.05.059

    Article  CAS  Google Scholar 

  109. Damjanović L, Bikić V, Šarić K, Erić S, Holclajtner-Antunović I (2014) Characterization of the early Byzantine pottery from Caričin Grad (South Serbia) in terms of composition and firing temperature. J Archaeol Sci 46:156–172

    Article  CAS  Google Scholar 

  110. Daniel F, Mounier A, Aramendia J, Gómez L, Castro K, Fdez-Ortiz de Vallejuelo S, Schlicht M (2015) Raman and SEM-EDX analyses of the “Royal Portal” of Bordeaux Cathedral for the virtual restitution of the statuary polychromy. J Raman Spectrosc. doi:10.1002/jrs.4770

    Google Scholar 

  111. Degano I, Biesaga M, Colombini MP, Trojanowicz M (2011) Historical and archaeological textiles: an insight on degradation products of wool and silk yarns. J Chromatogr A 1218:5837–5847. doi:10.1016/j.chroma.2011.06.095

    Article  CAS  Google Scholar 

  112. Degano I, Ribechini E, Modugno F, Colombini MP (2009) Analytical methods for the characterization of organic dyes in artworks and in historical textiles. Appl Spectrosc Rev 44:363–410. doi:10.1080/05704920902937876

    Article  CAS  Google Scholar 

  113. Dejoie C, Sciau P, Li W, Noé L, Mehta A, Chen K, Luo H, Kunz M, Tamura N, Liu Z (2014) Learning from the past: rare e-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares. Sci Rep 4:4941

    Article  CAS  Google Scholar 

  114. Delhaye M, Dhamelincourt P (1974) Laser Raman microprobe and microscope. In: Proceeding Abstracts, Fourth international conference on raman spectroscopy Brunswick, ME, USA

  115. Delhaye M, Migeon M (1966) Interêt de la concentration d’un faisceau laser pour l’excitation de l’effect Raman. C RAcad Sci Paris 262:1513–1516

    Google Scholar 

  116. Deneckere A, Vekemans B, Van de Voorde L, De Paepe P, Vincze L, Moens L, Vandenabeele P (2012) Feasibility study of the application of micro-Raman imaging as complement to micro-XRF imaging. Appl Phys A 106:363–376

    Article  CAS  Google Scholar 

  117. De Santis A, Mattei E, Pelosi C (2007) Micro-Raman and stratigraphic studies of the paintings on the “Cembalo” model musical instrument (A.D. 1650) and laser-induced degradation of the detected pigments. J Raman Spectrosc 38:1368–1378. doi:10.1002/jrs.1777

    Article  CAS  Google Scholar 

  118. Dhamlincourt P, Schubnel H-J (1977) La microsonde moléculaire à laser et son application à la minéralogie et la gemmologie. Rev Gemmol 52:11–14

    Google Scholar 

  119. Doherty B, Brunetti BG, Sgamellotti A, Miliani C (2011) A detachable SERS active cellulose film: a minimally invasive approach to the study of painting lakes. J Raman Spectrosc 42:1932–1938. doi:10.1002/jrs.2942

    Article  CAS  Google Scholar 

  120. Doherty B, Presciutti F, Sgamellotti A, Brunetti BG, Miliani C (2014) Monitoring of optimized SERS active gel substrates for painting and paper substrates by unilateral NMR profilometry. J Raman Spectrosc 45:1153–1159. doi:10.1002/jrs.4542

    Article  CAS  Google Scholar 

  121. Doherty B, Vagnini M, Dufourmantelle K, Sgamellotti A, Brunetti B, Miliani C (2014) A vibrational spectroscopic and principal component analysis of triarylmethane dyes by comparative laboratory and portable instrumentation. Spectrochim Acta A 121:292–305

    Article  CAS  Google Scholar 

  122. Döpner S, Hildebrandt P, Mauk AG, Lenk H, Stempfle W (1996) Analysis of vibrational spectra of multicomponent systems. Application to pH-dependent resonance Raman spectra of ferricytochrome C. Spectrochim Acta A 52:573–584

    Article  Google Scholar 

  123. Doty KC, Muro CK, Bueno J, Halámková L, Lednev IK (2016) What can Raman spectroscopy do for criminalistics? J Raman Spectrosc 47:39–50. doi:10.1002/jrs.4826

    Article  CAS  Google Scholar 

  124. Edwards HGM, Ali EMA (2011) Raman spectroscopy of archaeological and ancient resins: problems with database construction for applications in conservation and historical provenancing. Spectrochim Acta A 80:49–54

    Article  CAS  Google Scholar 

  125. Edwards HGM, Chalmers JM, Royal Society of Chemistry (Great Britain) (2005) Raman spectroscopy in archaeology and art history. Royal Society of Chemistry, Cambridge

    Google Scholar 

  126. Edwards HGM, Falk MJ, Edwards HGM, Falk MJ (1997) Fourier transform Raman spectroscopic study of ancient resins: a feasibility study of application to archaeological artefacts. J Raman Spectrosc 28:211–218

    Article  CAS  Google Scholar 

  127. Edwards HGM, Falk MJ, Edwards HGM, Falk MJ (1997) Fourier-transform Raman spectroscopic study of frankincense and myrrh. Spectrochim Acta A 53:2393–2401

    Article  Google Scholar 

  128. Edwards HGM, Falk MJ, Sibley MG, Alvarez-Benedi J, Rull F (1998) FT-Raman spectroscopy of gums of technological significance. Spectrochim Acta A 54:903–920

    Article  Google Scholar 

  129. Edwards HGM, Farwell DW (1996) Fourier-transform Raman spectroscopic study of natural waxes and resins. I. Spectrochim Acta A 52:1639–1648

    Article  Google Scholar 

  130. Edwards HGM, Farwell DW, Holder JM, Lawson EE (1997) Fourier-transform Raman spectroscopy of ivory: II. spectroscopic analysis and assignments. J Mol Struct 435:49–58. doi:10.1016/S0022-2860(97)00122-1

    Article  CAS  Google Scholar 

  131. Edwards HGM, Farwell DW, Seaward MRD (1991) Raman spectra of oxalates in lichen encrustations on Renaissance frescoes. Spectrochim Acta Part Mol Spectrosc 47:1531–1539. doi:10.1016/0584-8539(91)80247-G

    Article  Google Scholar 

  132. Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta Part 53:2383–2392. doi:10.1016/S1386-1425(97)00178-9

    Article  Google Scholar 

  133. Edwards HGM, Farwell DW, Williams AC, Barry BW, Rull F (1995) Novel spectroscopic deconvolution procedure for complex biological systems: vibrational components in the FT-Raman spectra of ice-man and contemporary skin. J Chem Soc Faraday Trans 91:3883–3887. doi:10.1039/FT9959103883

    Article  CAS  Google Scholar 

  134. Edwards HGM, Hunt DE, Sibley MG (1998) FT-Raman spectroscopic study of keratotic materials: horn, hoof and tortoiseshell. Spectrochim Acta A 54:745–757. doi:10.1016/S1386-1425(98)00013-4

    Article  Google Scholar 

  135. Edwards HGM, Johnson AF, Lewis IR (1993) Applications of Raman spectroscopy to the study of polymers and polymerization processes. J Raman Spectrosc 24:475–483. doi:10.1002/jrs.1250240803

    Article  CAS  Google Scholar 

  136. Edwards HGM, Moody CD, Jorge Villar SE, Wynn-Williams DD (2005) Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: evaluation for Mars Lander missions. Icarus 174:560–571. doi:10.1016/j.icarus.2004.07.029

    Article  Google Scholar 

  137. Edwards HGM, Perez FR (2004) Application of Fourier transform Raman spectroscopy to the characterization of parchment and vellum. II—effect of biodeterioration and chemical deterioration on spectral interpretation. J Raman Spectrosc 35:754–760. doi:10.1002/jrs.1155

    Article  CAS  Google Scholar 

  138. Edwards HGM, Russell NC, Seaward MRD, Slarke D (1995) Lichen biodeterioration under different microclimates: an FT Raman spectroscopic study. Spectrochim Acta Part Mol Spectrosc 51:2091–2100. doi:10.1016/0584-8539(95)01499-1

    Article  Google Scholar 

  139. Everall N, King B (1999) Raman spectroscopy for polymer characterization in an industrial environment. Macromol Symp 141:103–116. doi:10.1002/masy.19991410111

    Article  CAS  Google Scholar 

  140. Ferreira ESB, Hulme AN, McNab H, Quye A (2004) The natural constituents of historical textile dyes. Chem Soc Rev 33:329–336. doi:10.1039/b305697j

    Article  CAS  Google Scholar 

  141. Ferreira ESB, Quye A, McNab H, Hulme AN, Wouters J, Boon JJ (2001) Development of analytical techniques for the study of natural yellow dyes in historical textiles. Dyes Hist Archaeol 16(17):179–186

    Google Scholar 

  142. Fleischmann M, Hendra P, Mcquilla AJ (1974) Raman-spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166. doi:10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  143. Frano KA, Mayhew HE, Svoboda SA, Wustholz KL (2014) Combined SERS and Raman analysis for the identification of red pigments in cross-sections from historic oil paintings. Analyst 139:6450–6455. doi:10.1039/c4an01581a

    Article  CAS  Google Scholar 

  144. Fremout W, Saverwyns S (2012) Identification of synthetic organic pigments: the role of a comprehensive digital Raman spectral library. J Raman Spectrosc 43:1536–1544. doi:10.1002/jrs.4054

    Article  CAS  Google Scholar 

  145. Fritsch E, Rondeau B, Hainschwang T, Karampelas S (2012) Raman spectroscopy applied to gemmology. In: Dubessy J, Caumon MC, Rull F (eds) Raman spectroscopy applied to Earth sciences and cultural heritage. European Mineralogical Union Mineralogical Society of Great Britain and Ireland, Twickenham, UK, pp 455–489

  146. Frost RL (2004) Raman spectroscopy of natural oxalates. Anal Chim Acta 517:207–214. doi:10.1016/j.aca.2004.04.036

    Article  CAS  Google Scholar 

  147. Gall MJ, Hendra PJ, Peacock CJ, Cudby MEA, Willis HA (1972) Laser-Raman spectrum of polyethylene: part 1. Structure and analysis of the polymer. Polymer 13:104–108. doi:10.1016/S0032-3861(72)80003-X

    Article  CAS  Google Scholar 

  148. Geiman I, Leona M, Lombardi JR (2009) Application of Raman spectroscopy and surface-enhanced raman scattering to the analysis of synthetic dyes found in ballpoint pen inks. J Forensic Sci 54:947–952

    Article  CAS  Google Scholar 

  149. González-Vidal JJ, Perez-Pueyo R, Soneira MJ, Ruiz-Moreno S (2012) Automatic identification system of Raman spectra in binary mixtures of pigments. J Raman Spectrosc 43:1707–1712

    Article  CAS  Google Scholar 

  150. Greeneltch NG, Davis AS, Valley NA, Casadio F, Schatz GC, Van Duyne RP, Shah NC (2012) Near-IR surface-enhanced raman spectroscopy (NIR-SERS) for the identification of eosin Y: theoretical calculations and evaluation of two different nanoplasmonic substrates. J Phys Chem A 116:11863

    Article  CAS  Google Scholar 

  151. Guineau B (1984) Microanalysis of painted manuscripts and of colored archaeological materials by Raman laser microprobe. J Forensic Sci 29:471–485

    Article  CAS  Google Scholar 

  152. Guineau B, Guichard V (1987) Identification des colorants organiques naturels par microspectrometrie Raman de resonance et par effet Raman exalte de surface (SERS). ICOM Committee for Conservation: 8th Triennial Meeting, Sydney, Australia, 6-11 September, 1987. The Getty Conservation Institute, Sydney, pp 659–666

    Google Scholar 

  153. Halac EB, Reinoso M, Luda M, Marte F (2012) Raman mapping analysis of pigments from Proas Iluminadas by Quinquela MartÃn. J Cult Herit 13:469–473

    Article  Google Scholar 

  154. Hargreaves MD, Macleod NA, Brewster VL, Munshi T, Edwards HGM, Matousek P (2009) Application of portable Raman spectroscopy and benchtop spatially offset Raman spectroscopy to interrogate concealed biomaterials. J Raman Spectrosc 40:1875–1880. doi:10.1002/jrs.2335

    Article  CAS  Google Scholar 

  155. Hark RR, Clark RJH (2010) Raman microscopy of diverse samples of Lapis Lazuli at multiple excitation wavelengths. AIP Conf Proc 1267:315–316. doi:10.1063/1.3482531

    Article  Google Scholar 

  156. Henderson J (2013) Ancient glass. An interdisciplinary exploration. Cambridge University Press, New York, USA

    Google Scholar 

  157. Huong LTT, Hofmeister W, Hager T, Karampelas S, Kien NDT (2014) A preliminary study on the separation of natural and synthetic emeralds using vibrational spectroscopy. Gems Gemol 50:287–292

    CAS  Google Scholar 

  158. Idone A, Aceto M, Diana E, Appolonia L, Gulmini M (2014) Surface-enhanced Raman scattering for the analysis of red lake pigments in painting layers mounted in cross-sections. J Raman Spectrosc 45:1127–1132. doi:10.1002/jrs.4491

    Article  CAS  Google Scholar 

  159. Idone A, Gulmini M, Henry A-I, Casadio F, Chang L, Appolonia L, Duyne RPV, Shah NC (2013) Silver colloidal pastes for dye analysis of reference and historical textile fibers using direct, extractionless, non-hydrolysis surface-enhanced Raman spectroscopy. Analyst 138:5895–5903. doi:10.1039/C3AN00788J

    Article  CAS  Google Scholar 

  160. Jeanmaire D, Vanduyne R (1977) Surface Raman Spectroelectrochemistry. 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J Electroanal Chem 84:1–20. doi:10.1016/S0022-0728(77)80224-6

    Article  CAS  Google Scholar 

  161. Jehlicka J, Villar SEJ, Edwards HGM (2004) Fourier transform Raman spectra of Czech and Moravian fossil resins from freshwater sediments. J Raman Spectrosc 35:761–767

    Article  CAS  Google Scholar 

  162. Jehlicka J, Vitek P, Edwards HGM, Hargreaves M, Capoun T (2009) Rapid outdoor non-destructive detection of organic minerals using a portable Raman spectrometer. J Raman Spectrosc 40:1645–1651

    Article  CAS  Google Scholar 

  163. Jehlicka J, Vitek P, Edwards HGM, Heagraves M, Caapoun T (2009) Application of portable Raman instruments for fast and non-destructive detection of minerals on outcrops. Spectrochim Acta A 73:410–419

    Article  CAS  Google Scholar 

  164. Jorge-Villar SE, Edwards HGM (2013) Microorganism response to stressed terrestrial environments: a Raman spectroscopic perspective of extremophilic life strategies. Life Open Access J 3:276–294. doi:10.3390/life3010276

    Google Scholar 

  165. Jurasekova Z, del Puerto E, Bruno G, Garcia-Ramos JV, Sanchez-Cortes S, Domingo C (2010) Extractionless non-hydrolysis surface-enhanced Raman spectroscopic detection of historical mordant dyes on textile fibers. J Raman Spectrosc 41:1455–1461. doi:10.1002/jrs.2651

    Article  CAS  Google Scholar 

  166. Jurasekova Z, Domingo C, Garcia-Ramos JV, Sanchez-Cortes S (2008) In situ detection of flavonoids in weld-dyed wool and silk textiles by surface-enhanced Raman scattering. J Raman Spectrosc 39:1309–1312. doi:10.1002/jrs.2053

    Article  CAS  Google Scholar 

  167. Karampelas S, Fritsch E, Mevellec J-Y, Sklavounos S, Soldatos T (2009) Role of polyenes in the coloration of cultured freshwater pearls. Eur J Miner 21:85–97

    Article  CAS  Google Scholar 

  168. Karampelas S, Fritsch E, Rondeau B, Andouche A, Métivier B (2009) Identification of the endangered pink-to-red stylaster corals by Raman spectroscopy. Gems Gemol 45:48–52

    Article  CAS  Google Scholar 

  169. Kelloway SJ, Kononenko N, Torrence R, Carter EA (2010) Assessing the viability of portable Raman spectroscopy for determining the geological source of obsidian. Vib Spectrosc 53:88–96

    Article  CAS  Google Scholar 

  170. Keune K, Boon JJ, Boitelle R, Shimadzu Y (2013) Degradation of Emerald green in oil paint and its contribution to the rapid change in colour of the Descente des vaches (1834–1835) painted by Theodore Rousseau. Stud Conserv 58:199–210. doi:10.1179/2047058412Y.0000000063

    Article  CAS  Google Scholar 

  171. Kiefert L, Karampelas S (2011) Use of the Raman spectrometer in gemmological laboratories: review. Spectrochim Acta A 80:119–124. doi:10.1016/j.saa.2011.03.004

    Article  CAS  Google Scholar 

  172. Kingma KJ, Hemley RJ (1994) Raman spectroscopic study of microcrystalline silica. Am Minera 79:269–273

  173. Kogelnik H, Porto SPS (1963) Continuous Helium-Neon red Laser as a Raman source. J Opt Soc Am 53:1446–1447

    Article  CAS  Google Scholar 

  174. Kurouski D, Zaleski S, Casadio F, Van Duyne RP, Shah NC (2014) Tip-enhanced Raman spectroscopy (TERS) for in Situ identification of indigo and iron gall ink on paper. J Am Chem Soc 136:8677–8684. doi:10.1021/ja5027612

    Article  CAS  Google Scholar 

  175. Lau D, Livett M, Prawer S (2008) Application of surface-enhanced Raman spectroscopy (SERS) to the analysis of natural resins in artworks. J Raman Spectrosc 39:545–552. doi:10.1002/jrs.1878

    Article  CAS  Google Scholar 

  176. Lauwers D, Hutado AG, Tanevska V, Moens L, Bersani D, Vandenabeele P (2014) Characterisation of a portable Raman spectrometer for in situ analysis of art objects. Spectrochim Acta A 118:294–301

    Article  CAS  Google Scholar 

  177. Laver M (1997) Titanium dioxide whites. In: FitzHugh EW (ed) Artists’ pigments: a handbook of their history and characteristics, vol 3. National Gallery of Art, Washington & Oxford University Press, Oxford, pp 295–339

  178. Lee AS, Otieno-Alego V, Creagh DC (2008) Identification of iron-gall inks with near-IR Raman microspectroscopy. J Raman Spectrosc 39:1079–1084. doi:10.1002/jrs.1989

    Article  CAS  Google Scholar 

  179. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395. doi:10.1021/j100214a025

    Article  CAS  Google Scholar 

  180. Lenain BP (2000) Analytical Raman spectroscopy: a new generation of instruments. Analusis 28:11–14

    Article  CAS  Google Scholar 

  181. Leona M (2009) Microanalysis of organic pigments and glazes in polychrome works of art by surface-enhanced resonance Raman scattering. Proc Natl Acad Sci USA 106:14757–14762. doi:10.1073/pnas.0906995106

    Article  CAS  Google Scholar 

  182. Leona M (2006) Non-invasive identification of fluorescent dyes in historic textiles by matrix transfer-surface enhanced Raman scattering. US patent 6943031 B2

  183. Leona M, Decuzzi P, Kubic TA, Gates G, Lombardi JR (2011) Nondestructive identification of natural and synthetic organic colorants in works of art by surface enhanced Raman scattering. Anal Chem 83:3990–3993. doi:10.1021/ac2007015

    Article  CAS  Google Scholar 

  184. Leona M, Stenger J, Ferloni E (2006) Application of surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art. J Raman Spectrosc 37:981–992. doi:10.1002/jrs.1582

    Article  CAS  Google Scholar 

  185. Leon Y, Lofrumento C, Zoppi A, Carles R, Castellucci EM, Sciau P (2010) Micro-Raman investigation of terra sigillata slips: a comparative study of central Italian and southern Gaul productions. J Raman Spectrosc 41:1550–1555

    Article  CAS  Google Scholar 

  186. Lofrumento C, Prati S, Ricci M, Bonacini I, Quaranta M, Sciutto G, Ballarin B, Cassani MC, Castellucci E, Mazzeo R (2015) Identification of dyes in toned and tinted XX century cinematographic films by surface enhanced Raman spectroscopy. J Raman Spectrosc. doi:10.1002/jrs.4819

    Google Scholar 

  187. Lofrumento C, Ricci M, Platania E, Becucci M, Castellucci E (2013) SERS detection of red organic dyes in Ag-agar gel. J Raman Spectrosc 44:47–54. doi:10.1002/jrs.4162

    Article  CAS  Google Scholar 

  188. Lombardi JR, Birke RL (2009) A unified view of surface-enhanced Raman scattering. Acc Chem Res 42:734–742. doi:10.1021/ar800249y

    Article  CAS  Google Scholar 

  189. Lombardi JR, Birke RL (2012) The theory of surface-enhanced Raman scattering. J Chem Phys 136:144704. doi:10.1063/1.3698292

    Article  CAS  Google Scholar 

  190. Londero P, Lombardi JR, Leona M (2013) A compact optical parametric oscillator Raman microscope for wavelength-tunable multianalytic microanalysis. J Raman Spectrosc 44:131–135. doi:10.1002/jrs.4150

    Article  CAS  Google Scholar 

  191. Londero PS, Leona M, Lombardi JR (2013) Definitive evidence for linked resonances in surface-enhanced Raman scattering: excitation profile of Cu phthalocyanine. Appl Phys Lett 102:111101. doi:10.1063/1.4794071

    Article  CAS  Google Scholar 

  192. Londero PS, Lombardi JR, Leona M (2013) Laser ablation surface-enhanced Raman microspectroscopy. Anal Chem 85:5463–5467. doi:10.1021/ac400440c

    Article  CAS  Google Scholar 

  193. Luo S-C, Sivashanmugan K, Liao J-D, Yao C-K, Peng H-C (2014) Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review. Biosens Bioelectron 61:232–240. doi:10.1016/j.bios.2014.05.013

    Article  CAS  Google Scholar 

  194. Manzano E, Garcia-Atero J, Dominguez-Vidal A, Jose Ayora-Canada M, Fermin Capitan-Vallvey L, Navas N (2012) Discrimination of aged mixtures of lipidic paint binders by Raman spectroscopy and chemometrics. J Raman Spectrosc 43:781–786. doi:10.1002/jrs.3082

    Article  CAS  Google Scholar 

  195. Martínez-Arkarazo I, Smith DC, Zuloaga O, Olazabal MA, Madariaga JM (2008) Evaluation of three different mobile Raman microscopes employed to study deteriorated civil building stones. J Raman Spectrosc 39:1018–1029. doi:10.1002/jrs.1941

    Article  CAS  Google Scholar 

  196. Matousek P, Clark IP, Draper ERC, Morris MD, Goodship AE, Everall N, Towrie M, Finney WF, Parker AW (2005) Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl Spectrosc 59:393–400

    Article  CAS  Google Scholar 

  197. Matousek P, Morris MD, Everall N, Clark IP, Towrie M, Draper E, Goodship A, Parker AW (2005) Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl Spectrosc 59:1485–1492. doi:10.1366/000370205775142548

    Article  CAS  Google Scholar 

  198. Matousek P, Towrie M, Parker AW (2005) Simple reconstruction algorithm for shifted excitation Raman difference spectroscopy. Appl Spectrosc 59:848–851. doi:10.1366/0003702054280757

    Article  CAS  Google Scholar 

  199. Matousek P, Conti C, Colombo C, Realini M (2015) Monte Carlo simulations of subsurface analysis of painted layers in micro-scale spatially offset Raman spectroscopy. Appl Spectrosc 69:1091–1095. doi:10.1366/15-07894

    Article  CAS  Google Scholar 

  200. Matousek P, Conti C, Realini M, Colombo C (2016) MicroScale spatially offset Raman spectroscopy for noninvasive subsurface analysis of turbid materials. Analyst 141:731–739 (Published by The Royal Society of Chemistry)

    Article  CAS  Google Scholar 

  201. Mayhew HE, Fabian DM, Svoboda SA, Wustholz KL (2013) Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint. Analyst 138:4493–4499. doi:10.1039/C3AN00611E

    Article  CAS  Google Scholar 

  202. Mazzella WD, Buzzini P (2005) Raman spectroscopy of blue gel pen inks. Forensic Sci Int 152:241–247. doi:10.1016/j.forsciint.2004.09.115

    Article  CAS  Google Scholar 

  203. McNay G, Eustace D, Smith WE, Faulds K, Graham D (2011) Surface-enhanced raman scattering (SERS) and surface-enhanced resonance raman scattering (SERRS): a review of applications. Appl Spectrosc 65:825–837

    Article  CAS  Google Scholar 

  204. Medeghini L, Lottici PP, De Vito C, Mignardi S, Bersani D (2014) Micro-Raman spectroscopy and ancient ceramics: applications and problems. J Raman Spectrosc 45:1244–1250

    Article  CAS  Google Scholar 

  205. Miguel C, Claro A, Gonçalves AP, Muralha VSF, Melo MJ (2009) A study on red lead degradation in a medieval manuscript Lorvão Apocalypse (1189). J Raman Spectrosc 40:1966–1973. doi:10.1002/jrs.2350

    Article  CAS  Google Scholar 

  206. Mills JS, White R (1994) The organic chemistry of museum objects, 2nd edn. Butterworth Heinemann, London

    Google Scholar 

  207. Miralles I, Edwards HGM, Domingo F, Jorge-Villar SE (2015) Lichens around the world: a comprehensive study of lichen survival biostrategies detected by Raman spectroscopy. Anal Methods 7:6856–6868. doi:10.1039/C5AY00655D

    Article  CAS  Google Scholar 

  208. Monico L, Janssens K, Hendriks E, Brunetti BG, Miliani C (2014) Raman study of different crystalline forms of PbCrO4 and PbCr1 − xSxO4 solid solutions for the noninvasive identification of chrome yellows in paintings: a focus on works by Vincent van Gogh. J Raman Spectrosc 45:1034–1045

    Article  CAS  Google Scholar 

  209. Monico L, Janssens K, Miliani C, Van der Snickt G, Brunetti BG, Cestelli Guidi M, Radepont M, Cotte M (2013) Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. 4. Artificial aging of model samples of co-precipitates of lead chromate and lead sulfate. Anal Chem 85:860–867. doi:10.1021/ac3021592

    Article  CAS  Google Scholar 

  210. Monnier J, Bellot-Gurlet L, Baron D, Neff D, Guillot I, Dillmann Ph (2011) A methodology for Raman structural quantification imaging and its application to iron indoor atmospheric corrosion products. J Raman Spectrosc 42:773–781

    Article  CAS  Google Scholar 

  211. Muehlethaler C, Leona M, Lombardi JR (2016) Review of surface enhanced Raman scattering applications in forensic science. Anal Chem 88:152–169. doi:10.1021/acs.analchem.5b04131

    Article  CAS  Google Scholar 

  212. Muehlethaler C, Massonnet G, Esseiva P (2011) The application of chemometrics on IR and Raman spectra as a tool for the forensic analysis of paints. Forensic Sci Int 209:173–182

    Article  CAS  Google Scholar 

  213. Muralha VSF, Miguel C, Melo MJ (2012) Micro-Raman study of Medieval Cistercian 12–13th century manuscripts: Santa Maria de Alcobaça, Portugal. J Raman Spectrosc 43:1737–1746. doi:10.1002/jrs.4065

    Article  CAS  Google Scholar 

  214. Navas N, Romero-Pastor J, Manzano E, Cardell C, Navas N, Romero-Pastor J, Manzano E, Cardell C (2010) Raman spectroscopic discrimination of pigments and tempera paint model samples by principal component analysis on first-derivative spectra. J Raman Spectrosc 41:1486–1493

    Article  CAS  Google Scholar 

  215. Nevin A, Melia JL, Osticioli I, Gautier G, Colombini MP (2008) The identification of copper oxalates in a 16th century Cypriot exterior wall painting using micro FTIR, micro Raman spectroscopy and gas chromatography-mass spectrometry. J Cult Herit 9:154–161. doi:10.1016/j.culher.2007.10.002

    Article  Google Scholar 

  216. Nevin A, Osticioli I, Anglos D, Burnstock A, Cather S, Castellucci E (2007) Raman spectra of proteinaceous materials used in paintings: a multivariate analytical approach for classification and identification. Anal Chem 79:6143–6151

    Article  CAS  Google Scholar 

  217. Nevin A, Osticioli I, Demetrios Anglos D, Burnstock A, Cather S, Castellucci E (2008) The analysis of naturally and artificially aged protein-based paint media using Raman spectroscopy combined with principal component analysis. J Raman Spectrosc 39:993–1000

    Article  CAS  Google Scholar 

  218. Nevin A, Spoto G, Anglos D (2012) Laser spectroscopies for elemental and molecular analysis in art and archaeology. Appl Phys A 106:339–361

    Article  CAS  Google Scholar 

  219. Nielsen JR (1964) Raman spectra of polymers. J Polym Sci Part C 7:19–35. doi:10.1002/polc.5070070104

    Article  Google Scholar 

  220. Nielsen SE, Scaffidi JP, Yezierski EJ (2014) Detecting art forgeries: a problem-based Raman spectroscopy lab. J Chem Educ 91:446–450. doi:10.1021/ed400319k

    Article  CAS  Google Scholar 

  221. Oakley LH, Dinehart SA, Svoboda SA, Wustholz KL (2011) Identification of organic materials in historic oil paintings using correlated extractionless surface-enhanced Raman scattering and fluorescence microscopy. Anal Chem 83:3986–3989. doi:10.1021/ac200698q

    Article  CAS  Google Scholar 

  222. Oakley LH, Fabian DM, Mayhew HE, Svoboda SA, Wustholz KL (2012) Pretreatment strategies for SERS analysis of indigo and Prussian blue in aged painted surfaces. Anal Chem 84:8006–8012. doi:10.1021/ac301814e

    Article  CAS  Google Scholar 

  223. Osticioli I, Mendes NFC, Nevin A, Gil FPSC, Becucci M, Castellucci E (2009) Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochim Acta A 73:525–531

    Article  CAS  Google Scholar 

  224. Osticioli I, Mendes NFC, Nevin A, Zoppi A, Lofrumento C, Becucci M, Castellucci EM (2009) A new compact instrument for Raman, laser-induced breakdown, and laser-induced fluorescence spectroscopy of works of art and their constituent materials. Rev Sci Instrum 80:076109. doi:10.1063/1.3184102

    Article  CAS  Google Scholar 

  225. Osticioli I, Zoppi A, Castellucci EM (2006) Fluorescence and Raman spectra on painting materials: reconstruction of spectra with mathematical methods. J Raman Spectrosc 37:974–980

    Article  CAS  Google Scholar 

  226. Otero V, Sanches D, Montagner C, Vilarigues M, Carlyle L, Lopes JA, Melo MJ (2014) Characterisation of metal carboxylates by Raman and IR spectroscopy in works of art. J Raman Spectrosc 45:1197–1206

    Article  CAS  Google Scholar 

  227. Özçatal M, Yaygıngöl M, İssi A, Kara A, Turan S, Okyar F, Pfeiffer Taş Ş, Nastova I, Grupče O, Minčeva-Šukarova B (2014) Characterization of lead glazed potteries from Smyrna (İzmir/Turkey) using multiple analytical techniques; Part I: body. Ceram Int 40:2153–2160

    Article  CAS  Google Scholar 

  228. Pagès-Camagna S, Duval A, Guicharnaud H (2004) Study of Gustave Moreau’s black drawings: identification of the graphic materials by Raman microspectrometry and PIXE. J Raman Spectrosc 35:628–632. doi:10.1002/jrs.1215

    Article  CAS  Google Scholar 

  229. Pallipurath A, Skelton J, Ricciardi P, Bucklow S, Elliott S (2013) Multivariate analysis of combined Raman and fibre-optic reflectance spectra for the identification of binder materials in simulated medieval paints. J Raman Spectrosc 44:866–874

    Article  CAS  Google Scholar 

  230. Pallipurath A, Vofely RV, Skelton J, Ricciardi P, Bucklow S, Elliott S (2014) Estimating the concentrations of pigments and binders in lead-based paints using FT-Raman spectroscopy and principal component analysis. J Raman Spectrosc 45:1272–1278. doi:10.1002/jrs.4525

    Article  CAS  Google Scholar 

  231. Pastorelli G, Trafela T, Taday PF, Portieri A, Lowe D, Fukunaga K, Strlic M (2012) Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging. Anal Bioanal Chem 403:1405–1414. doi:10.1007/s00216-012-5931-9

    Article  CAS  Google Scholar 

  232. Pereira A, Candeias A, Cardoso A, Rodrigues D, Vandenabeele P, Caldeira AT (2016) Non-invasive methodology for the identification of plastic pieces in museum environment—a novel approach. Microchem J 124:846–855. doi:10.1016/j.microc.2015.07.027

    Article  CAS  Google Scholar 

  233. Perets EA, Indrasekara ASDS, Kurmis A, Atlasevich N, Fabris L, Arslanoglu J (2015) Carboxy-terminated immuno-SERS tags overcome non-specific aggregation for the robust detection and localization of organic media in artworks. Analyst 140:5971–5980. doi:10.1039/c5an00817d

    Article  CAS  Google Scholar 

  234. Pérez-Alonso M, Castro K, Madariaga JM (2006) Investigation of degradation mechanisms by portable Raman spectroscopy and thermodynamic speciation: the wall painting of Santa María de Lemoniz (Basque Country, North of Spain). Anal Chim Acta 571:121–128. doi:10.1016/j.aca.2006.04.049

    Article  CAS  Google Scholar 

  235. Pérez-Alonso M, Castro K, Martinez-Arkarazo I, Angulo M, Olazabal MA, Madariaga JM (2004) Analysis of bulk and inorganic degradation products of stones, mortars and wall paintings by portable Raman microprobe spectroscopy. Anal Bioanal Chem 379:42–50. doi:10.1007/s00216-004-2496-2

    Article  CAS  Google Scholar 

  236. Petrou M, Edwards HGM, Janaway RC, Thompson GB, Wilson AS (2009) Fourier-transform Raman spectroscopic study of a Neolithic waterlogged wood assemblage. Anal Bioanal Chem 395:2131–2138. doi:10.1007/s00216-009-3178-x

    Article  CAS  Google Scholar 

  237. Petrová Z, Jehlička J, Čapoun T, Hanus R, Trojek T, Goliáš V (2012) Gemstones and noble metals adorning the sceptre of the Faculty of Science of Charles University in Prague: integrated analysis by Raman and XRF handheld instruments. J Raman Spectrosc 43:1275–1280

    Article  CAS  Google Scholar 

  238. Piantanida G, Menart E, Bicchieri M, Strlič M (2013) Classification of iron-based inks by means of micro-Raman spectroscopy and multivariate data analysis. J Raman Spectrosc 44:1299–1305

    Article  CAS  Google Scholar 

  239. Pirok BWJ, Knip J, van Bommel MR, Schoenmakers PJ (2016) Characterization of synthetic dyes by comprehensive two-dimensional liquid chromatography combining ion-exchange chromatography and fast ion-pair reversed-phase chromatography. J Chromatogr A 1436:141–146. doi:10.1016/j.chroma.2016.01.070

    Article  CAS  Google Scholar 

  240. Platania E, Lofrumento C, Lottini E, Azzaro E, Ricci M, Becucci M (2015) Tailored micro-extraction method for Raman/SERS detection of indigoids in ancient textiles. Anal Bioanal Chem 407:6505–6514. doi:10.1007/s00216-015-8816-x

    Article  CAS  Google Scholar 

  241. Platania E, Lombardi JR, Leona M, Shibayama N, Lofrumento C, Ricci M, Becucci M, Castellucci E (2014) Suitability of Ag-agar gel for the micro-extraction of organic dyes on different substrates: the case study of wool, silk, printed cotton and a panel painting mock-up. J Raman Spectrosc 45:1133–1139. doi:10.1002/jrs.4531

    Article  CAS  Google Scholar 

  242. Pozzi F, Leona M (2016) Surface-enhanced Raman spectroscopy in art and archaeology. J Raman Spectrosc 47:67–77. doi:10.1002/jrs.4827

    Article  CAS  Google Scholar 

  243. Pozzi F, Lombardi JR, Bruni S, Leona M (2012) Sample treatment considerations in the analysis of organic colorants by surface-enhanced Raman scattering. Anal Chem 84:3751–3757. doi:10.1021/ac300380c

    Article  CAS  Google Scholar 

  244. Pozzi F, Lombardi JR, Leona M (2013) Winsor & Newton original handbooks: a surface-enhanced Raman scattering (SERS) and Raman spectral database of dyes from modern watercolor pigments. Herit Sci 1:23. doi:10.1186/2050-7445-1-23

    Article  CAS  Google Scholar 

  245. Pozzi F, Porcinai S, Lombardi JR, Leona M (2013) Statistical methods and library search approaches for fast and reliable identification of dyes using surface-enhanced Raman spectroscopy (SERS). Anal Methods 5:4205–4212. doi:10.1039/C3AY40673C

    Article  CAS  Google Scholar 

  246. Pozzi F, Shibayama N, Leona M, Lombardi JR (2013) TLC-SERS study of Syrian rue (Peganum harmala) and its main alkaloid constituents. J Raman Spectrosc 44:102–107. doi:10.1002/jrs.4140

    Article  CAS  Google Scholar 

  247. Pozzi F, van den Berg KJ, Fiedler I, Casadio F (2014) A systematic analysis of red lake pigments in French Impressionist and Post-Impressionist paintings by surface-enhanced Raman spectroscopy (SERS). J Raman Spectrosc 45:1119–1126. doi:10.1002/jrs.4483

    Article  CAS  Google Scholar 

  248. Pozzi F, Zaleski S, Casadio F, Leona M, Lombardi JR, Van Duyne R (2016) Surface-enhanced raman spectroscopy: using nanoparticles to detect trace amounts of colorants in works of art. In: Dillmann P, Bellot-Gurlet L, Nenner I (eds) Nanoscience and cultural heritage. Atlantis Press, Paris, pp 161–204

  249. Prikhodko S, Fischer C, Boytner R, Lozada M, Uribe M, Kakoulli I (2007) Applications of variable pressure SEM and Raman spectroscopy for the non-destructive study of bio-specimens from pre-Columbian mummies in the Tarapacá Valley, Northern Chile. Microsc Microanal 13:1492–1493. doi:10.1017/S1431927607075332

    Article  Google Scholar 

  250. Prikhodko SV, Rambaldi DC, King A, Burr E, Muros V, Kakoulli I (2015) New advancements in SERS dye detection using interfaced SEM and Raman spectromicroscopy (μRS). J Raman Spectrosc 46:632–635. doi:10.1002/jrs.4710

    Article  CAS  Google Scholar 

  251. Qiu-ju H, Li-qin W (2016) Research progress of Raman spectroscopy on Dyestuff identification of ancient relics and artifacts. Spectrosc Spectr Anal 36:401–407. doi:10.3964/j.issn.1000-0593(2016)02-0401-07

    Google Scholar 

  252. Raffaëlly L, Champagnon B, Ollier N, Foy D (2008) IR and Raman spectroscopies, a way to understand how the Roman window glasses were made? J Non-Cryst Solids 354:780–786

    Article  CAS  Google Scholar 

  253. Raffaëlly-Veslin L, Champagnon B, Lesage F (2008) Thermal history and manufacturing processes of Roman panes studied by Raman spectroscopy. J Raman Spectrosc 39:1120–1124

    Article  CAS  Google Scholar 

  254. Raman CV (1928) A new radiation. Indian J Phys 2:387–398

    CAS  Google Scholar 

  255. Ramos PM, Ferré J, Ruisánchez I, Andrikopoulos KS (2004) Fuzzy logic for identifying pigments studied by Raman spectroscopy. Appl Spectrosc 58:848–854

    Article  CAS  Google Scholar 

  256. Rana V, Canamares MV, Kubic T, Leona M, Lombardi JR (2011) Surface-enhanced Raman spectroscopy for trace identification of controlled substances: morphine, codeine, and hydrocodone. J Forensic Sci 56:200–207. doi:10.1111/j.1556-4029.2010.01562.x

    Article  CAS  Google Scholar 

  257. Retko K, Ropret P, Korosec RC (2014) Surface-enhanced Raman spectroscopy (SERS) analysis of organic colourants utilising a new UV-photoreduced substrate. J Raman Spectrosc 45:1140–1146. doi:10.1002/jrs.4533

    Article  CAS  Google Scholar 

  258. Ricciardi P, Colomban P, Milande V (2008) Non-destructive Raman characterization of Capodimonte and Buen Retiro porcelain. J Raman Spectrosc 39:1113–1119. doi:10.1002/jrs.1918

    Article  CAS  Google Scholar 

  259. Ricciardi P, Delaney JK, Facini M, Glinsman L (2013) Use of imaging spectroscopy and in situ analytical methods for the characterization of the materials and techniques of 15th century illuminated manuscripts. J Am Inst Conserv 52:13–29. doi:10.1179/0197136012Z.0000000004

    Article  Google Scholar 

  260. Ricciardi P, Delaney JK, Facini M, Zeibel JG, Picollo M, Lomax S, Loew M (2012) near-IR reflectance imaging spectroscopy to map paint binders in situ on illuminated manuscripts. Angew Chem Int Ed 51:5607–5610. doi:10.1002/anie.201200840

    Article  CAS  Google Scholar 

  261. Robinet L, Bouquillon A, Hartwig J (2008) Correlations between Raman parameters and elemental composition in lead and lead alkali silicate glasses. J Raman Spectrosc 39:618–626

    Article  CAS  Google Scholar 

  262. Robinet L, Coupry C, Eremin K, Hall C (2006) The use of Raman spectrometry to predict the stability of historic glasses. J Raman Spectrosc 37:789–797

    Article  CAS  Google Scholar 

  263. Roh JY, Matecki MK, Svoboda SA, Wustholz KL (2016) Identifying pigment mixtures in art using SERS: a treatment flowchart approach. Anal Chem 88:2028–2032. doi:10.1021/acs.analchem.6b00044

    Article  CAS  Google Scholar 

  264. Roldán ML, Centeno SA, Rizzo A (2014) An improved methodology for the characterization and identification of sepia in works of art by normal Raman and SERS, complemented by FTIR, Py-GC/MS, and XRF. J Raman Spectrosc 45:1160–1171. doi:10.1002/jrs.4620

    Article  CAS  Google Scholar 

  265. Roldan ML, Centeno SA, Rizzo A, van Dyke Y (2015) Characterization of bistre pigment samples by FTIR, SERS, Py-GC/MS and XRF. In: Symposium PP—materials Issues in Art and Archaeology X, pp mrsf13–1656–pp02–04 (10 pages)

  266. Ropret P, Miliani C, Centeno SA, Tavzes C, Rosi F (2010) Advances in Raman mapping of works of art. J Raman Spectrosc 41:1462–1467. doi:10.1002/jrs.2733

    Article  CAS  Google Scholar 

  267. Rosasco GJ, Etz ES, Cassatt WA (1974) Investigation of the Raman spectra of individual micron sized particles. Proceeding Abstracts, Fourth International Conference on Raman Spectroscopy

  268. Rosi F, Paolantoni M, Clementi C, Doherty B, Miliani C, Brunetti BG, Sgamellotti A (2010) Subtracted shifted Raman spectroscopy of organic dyes and lakes. J Raman Spectrosc 41:452–458. doi:10.1002/jrs.2447

    CAS  Google Scholar 

  269. Salpin F, Trivier F, Lecomte S, Coupry C (2006) A new quantitative method: non-destructive study by Raman spectroscopy of dyes fixed on wool fibres. J Raman Spectrosc 37:1403–1410. doi:10.1002/jrs.1557

    Article  CAS  Google Scholar 

  270. San Andrés M, de la Roja JM, Baonza VG, Sancho N (2010) Verdigris pigment: a mixture of compounds. Input from Raman spectroscopy. J Raman Spectrosc 41:1468–1476. doi:10.1002/jrs.2786

    Article  CAS  Google Scholar 

  271. Saverwyns S (2010) Russian avant-garde… or not? A micro-Raman spectroscopy study of six paintings attributed to Liubov Popova. J Raman Spectrosc 41:1525–1532. doi:10.1002/jrs.2654

    Article  CAS  Google Scholar 

  272. Saviello D, Toniolo L, Goidanich S, Casadio F (2016) Non-invasive identification of plastic materials in museum collections with portable FTIR reflectance spectroscopy: reference database and practical applications. Microchem J 124:868–877. doi:10.1016/j.microc.2015.07.016

    Article  CAS  Google Scholar 

  273. Scherrer NC, Stefan Z, Francoise D, Annette F, Renate K (2009) Synthetic organic pigments of the 20th and 21st century relevant to artist’s paints: Raman spectra reference collection. Spectrochim Acta Part 73:505–524. doi:10.1016/j.saa.2008.11.029

    Article  CAS  Google Scholar 

  274. Schlücker S, Schaeberle MD, Huffman SW, Levin IW (2003) Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies. Anal Chem 75:4312–4318

    Article  CAS  Google Scholar 

  275. Schubnel HJ, Pinet M, Smith DC, Lasnier B (eds) (1992) La microsonde Raman en gemmologie. Association Française de Gemmologie, Paris

  276. Sciutto G, Litti L, Lofrumento C, Prati S, Ricci M, Gobbo M, Roda A, Castellucci E, Meneghetti M, Mazzeo R (2013) Alternative SERRS probes for the immunochemical localization of ovalbumin in paintings: an advanced mapping detection approach. Analyst 138:4532–4541. doi:10.1039/c3an00057e

    Article  CAS  Google Scholar 

  277. Shadi QT, Chowdhry BZ, Snowden MJ, Withnall R (2004) Semi-quantitative analysis of alizarin and purpurin by surface-enhanced resonance Raman spectroscopy (SERRS) using silver colloids. J Raman Spectrosc 35:800–807. doi:10.1002/jrs.1199

    Article  CAS  Google Scholar 

  278. Sharma B, Cardinal MF, Kleinman SL, Greeneltch NG, Frontiera RR, Blaber MG, Schatz GC, Van Duyne RP (2013) High-performance SERS substrates: advances and challenges. MRS Bull 38:615–624. doi:10.1557/mrs.2013.161

    Article  CAS  Google Scholar 

  279. Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Mater Today 15:16–25

    Article  CAS  Google Scholar 

  280. Sharma SK, Misra AK, Lucey PG, Lentz RCF (2009) A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Spectrochim Acta A 73:468–476

    Article  CAS  Google Scholar 

  281. Shashoua Y, Berthelsen MBLD, Nielsen OF (2006) Raman and ATR-FTIR spectroscopies applied to the conservation of archaeological Baltic amber. J Raman Spectrosc 37:1221–1227

    Article  CAS  Google Scholar 

  282. Smith GD, Burgio L, Firth S, Clark RJH (2001) Laser-induced degradation of lead pigments with reference to Botticelli’s Trionfo d’Amore. Anal Chim Acta 440:185–188. doi:10.1016/S0003-2670(01)01053-4

    Article  CAS  Google Scholar 

  283. Smith GD, Clark RJH (2001) Raman microscopy in art history and conservation science. Stud Conserv 46:92–106. doi:10.1179/sic.2001.46.2.92

    Article  Google Scholar 

  284. Smith GD, Clark RJH (2004) Raman microscopy in archaeological science. J Archaeol Sci 31:1137–1160

    Article  Google Scholar 

  285. Smith GD, Derbyshire A, Clark RJH (2002) In situ spectroscopic detection of lead sulphide on a blackened manuscript illumination by Raman microscopy. Stud Conserv 47:250–256. doi:10.1179/sic.2002.47.4.250

    CAS  Google Scholar 

  286. Sodo A, Bicchieri M, Guiso M, Ricci MA, Ricci G (2012) Raman investigations on marker pen inks. J Raman Spectrosc 43:1781–1787. doi:10.1002/jrs.4070

    Article  CAS  Google Scholar 

  287. Staniszewska E, Malek K, Kaszowska Z (2013) Studies on paint cross-sections of a glass painting by using FT-IR and Raman microspectroscopy supported by univariate and hierarchical cluster analyses. J Raman Spectrosc 44:1144–1155

    Article  CAS  Google Scholar 

  288. Tomasini EP, Halac EB, Reinoso M, Di Liscia EJ, Maier MS (2012) Micro-Raman spectroscopy of carbon-based black pigments. J Raman Spectrosc 43:1671–1675

    Article  CAS  Google Scholar 

  289. Tournié A, Prinsloo LC, Colomban P (2011) Raman classification of glass beads excavated on Mapungubwe hill and K2, two archaeological sites in South Africa. J Raman Spectrosc 43:532–542

    Article  CAS  Google Scholar 

  290. Trentelman K (2009) A note on the characterization of bismuth black by Raman microspectroscopy. J Raman Spectrosc 40:585–589. doi:10.1002/jrs.2184

    Article  CAS  Google Scholar 

  291. Trentelman K, Stodulski L, Pavlosky M (1996) Characterization of pararealgar and other light-induced transformation products from realgar by Raman microspectroscopy. Anal Chem 68:1755–1761. doi:10.1021/ac951097o

    Article  CAS  Google Scholar 

  292. Trentelman K, Turner N (2009) Investigation of the painting materials and techniques of the late-15th century manuscript illuminator Jean Bourdichon. J Raman Spectrosc 40:577–584. doi:10.1002/jrs.2186

    Article  CAS  Google Scholar 

  293. Vandenabeele P (2000) Raman spectroscopic database of azo pigments and application to modern art studies. J Raman Spectrosc 517:509–517

    Article  Google Scholar 

  294. Vandenabeele P, Castro K, Hargreaves M, Moens L, Madariaga JM, Edwards HGM (2007) Comparative study of mobile Raman instrumentation for art analysis. Anal Chim Acta 588:108–116

    Article  CAS  Google Scholar 

  295. Vandenabeele P, Edwards HGM, Jehlicka J (2014) The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem Soc Rev 43:2628–2649

    Article  CAS  Google Scholar 

  296. Vandenabeele P, Edwards HGM, Moens L (2007) A decade of Raman spectroscopy in art and archaeology. Chem Rev ACS 107:675–686

    Article  CAS  Google Scholar 

  297. Vandenabeele P, Moens L (2003) Micro-Raman spectroscopy of natural and synthetic indigo samples. Analyst 128:187–193

    Article  CAS  Google Scholar 

  298. Vandenabeele P, Wehling B, Moens L, Edwards H, De Reu M, Van Hooydonk G (2000) Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Anal Chim Acta 407:261–274. doi:10.1016/S0003-2670(99)00827-2

    Article  CAS  Google Scholar 

  299. Vandenabeele P, Weis TL, Grant ER, Moens LJ (2004) A new instrument adapted to in situ Raman analysis of objects of art. Anal Bioanal Chem 379:137–142

    Article  CAS  Google Scholar 

  300. Villafana TE, Brown WP, Delaney JK, Palmer M, Warren WS, Fischer MC (2014) Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork. Proc Natl Acad Sci USA 111:1708–1713. doi:10.1073/pnas.1317230111

    Article  CAS  Google Scholar 

  301. Vitek P, Ali EMA, Edwards HGM, Jehlicka J, Cox R, Page K (2012) Evaluation of portable Raman spectrometer with 1064 nm excitation for geological and forensic applications. Spectrochim Acta A 86:320–327

    Article  CAS  Google Scholar 

  302. Weis TL, Jiang Y, Grant ER (2004) Toward the comprehensive spectrochemical imaging of painted works of art: a new instrumental approach. J Raman Spectrosc 35:813–818

    Article  CAS  Google Scholar 

  303. Whitney AV, Casadio F, Van Duyne RP (2007) Identification and characterization of artists’ red dyes and their mixtures by surface-enhanced Raman spectroscopy. Appl Spectrosc 61:994–1000

    Article  CAS  Google Scholar 

  304. Whitney AV, Van Duyne RP, Casadio F (2006) An innovative surface-enhanced Raman spectroscopy (SERS) method for the identification of six historical red lakes and dyestuffs. J Raman Spectrosc 37:993–1002. doi:10.1002/jrs.1576

    Article  CAS  Google Scholar 

  305. Williams AC, Edwards HGM, Barry BW (1994) Raman spectra of human keratotic biopolymers: skin, callus, hair and nail. J Raman Spectrosc 25:95–98. doi:10.1002/jrs.1250250113

    Article  CAS  Google Scholar 

  306. Wilson AS, Edwards HGM, Farwell DW, Janaway RC (1999) Fourier transform Raman spectroscopy: evaluation as a non-destructive technique for studying the degradation of human hair from archaeological and forensic environments. J Raman Spectrosc 30:367–373. doi:10.1002/(SICI)1097-4555(199905)30:5<367:AID-JRS384>3.0.CO;2-I

    Article  CAS  Google Scholar 

  307. Winkler W, Kirchner ECh, Asenbaum A, Musso M (2001) A Raman spectroscopic approach to the maturation process of fossil resins. J Raman Spectrosc 32:59–63

    Article  CAS  Google Scholar 

  308. Withnall R, Chowdhry BZ, Silver J, Edwards HGM, de Oliveira LFC (2003) Raman spectra of carotenoids in natural products. Spectrochim Acta A 59:2207–2212. doi:10.1016/S1386-1425(03)00064-7

    Article  CAS  Google Scholar 

  309. Wouters J (1985) High performance liquid chromatography of anthraquinones: analysis of plant and insect extracts and dyed textiles. Stud Conserv 30:119–128

    CAS  Google Scholar 

  310. Wouters J, Verhecken A (1989) The coccid insect dyes: HPLC and computerized diode-array analysis of dyed yarns. Stud Conserv 34:189–200. doi:10.2307/1506286

    CAS  Google Scholar 

  311. Wustholz KL, Brosseau CL, Casadio F, Van Duyne RP (2009) Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists’ canvas. Phys Chem Chem Phys 11:7350–7359. doi:10.1039/b904733f

    Article  CAS  Google Scholar 

  312. Wynn-Williams DD, Edwards HGM (2000) Proximal analysis of regolith habitats and protective biomolecules in situ by laser Raman spectroscopy: overview of terrestrial antarctic habitats and mars analogs. Icarus 144:486–503. doi:10.1006/icar.1999.6307

    Article  CAS  Google Scholar 

  313. Yaffe NR, Blanch EW (2008) Effects and anomalies that can occur in SERS spectra of biological molecules when using a wide range of aggregating agents for hydroxylamine-reduced and citrate-reduced silver colloids. Vib Spectrosc 48:196–201. doi:10.1016/j.vibspec.2007.12.002

    Article  CAS  Google Scholar 

  314. Zaffino C, Bedini GD, Mazzola G, Guglielmi V, Bruni S (2016) Online coupling of high-performance liquid chromatography with surface-enhanced Raman spectroscopy for the identification of historical dyes. J Raman Spectrosc. doi:10.1002/jrs.4867

    Google Scholar 

  315. Zaffino C, Bruni S, Guglielmi V, De Luca E (2014) Fourier-transform surface-enhanced Raman spectroscopy (FT-SERS) applied to the identification of natural dyes in textile fibers: an extractionless approach to the analysis. J Raman Spectrosc 45:211–218. doi:10.1002/jrs.4443

    Article  CAS  Google Scholar 

  316. Zhao J, Carrabba MM, Allen FS (2002) Automated fluorescence rejection using shifted excitation Raman difference spectroscopy. Appl Spectrosc 56:834–845

    Article  CAS  Google Scholar 

  317. Zoppi A, Lofrumento C, Mendes NFC, Castellucci EM (2010) Metal oxalates in paints: a Raman investigation on the relative reactivities of different pigments to oxalic acid solutions. Anal Bioanal Chem 397:841–849. doi:10.1007/s00216-010-3583-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research at the Art Institute of Chicago is supported through generous grants of the Andrew W. Mellon Foundation and Grainger Foundation. Grant DMR-0723053 from the National Science Foundation is also gratefully acknowledged for the acquisition of a FT-Raman spectrometer at the Art Institute of Chicago. Claudia Conti and Pavel Matousek are thanked for generously sharing the material reproduced in Fig. 2 for this review. F.C. thanks Prof. Richard P. Van Duyne of Northwestern University for several years of collaboration and inspiration in SERS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Casadio.

Additional information

This article is part of the Topical Collection “Analytical Chemistry for cultural heritage”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casadio, F., Daher, C. & Bellot-Gurlet, L. Raman Spectroscopy of cultural heritage Materials: Overview of Applications and New Frontiers in Instrumentation, Sampling Modalities, and Data Processing. Top Curr Chem (Z) 374, 62 (2016). https://doi.org/10.1007/s41061-016-0061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-016-0061-z

Keywords