Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Comparative analysis of lineaments extracted from Cartosat, SRTM and ASTER DEM: a study based on four watersheds in Konkan region, India

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

In this study, lineaments have been extracted from Cartosat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Shuttle Radar Topographic Mission (SRTM) Digital Elevation Models (DEM) of different spatial resolution. The extracted lineaments were analysed to understand which DEM is most suitable for extraction of lineaments accurately. The results have shown that maximum number of lineaments can be extracted by using Cartosat DEM while ASTER DEM provides lowest number of lineaments. As a result of this study, it is suggested to make use of Cartosat DEM for the extraction of lineaments in Indian territory (data is only available for India), because it provides the most detailed geological information among all the datasets. Cartosat DEM is also suitable for studying very small areas as detailed surface information can be extracted by using this data. SRTM DEM can be used for countries other than India, and it has the capability to deliver moderate structural information. Likewise, SRTM data is more suitable for a large study area. ASTER DEM is not recommended for the study of structural and geological surface features because most of the features cannot be extracted and the result could not be applied in the detailed geological study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://srtm.csi.cgiar.org/.

  2. https://reverb.echo.nasa.gov/reverb/.

  3. http://bhuvan.nrsc.gov.in/.

  4. https://earthexplorer.usgs.gov/.

  5. www.rockware.com.

References

  1. Mostafa, M. E., & Zakir, F. A. (1996). New enhancement techniques for azimuthal analysis of lineaments for detecting tectonic trends in and around the Afro-Arabian Shield. International Journal of Remote Sensing, 17(15), 2923–2943. https://doi.org/10.1080/01431169608949119.

    Article  Google Scholar 

  2. Karnieli, A., Meisels, A., Fisher, L., & Arkin, Y. (1996). Automatic extraction of geological linear features from digital remote sensing data using a Hough transform. Photogrammetric Engineering & Remote Sensing, 62, 525–531.

    Google Scholar 

  3. Arlegui, L. E., & Soriano, M. A. (1998). Characterizing lineaments from satellite images and field studies in the central Ebro basin (NE Spain). International Journal of Remote Sensing, 19(16), 3169–3185. https://doi.org/10.1080/014311698214244.

    Article  Google Scholar 

  4. Zakir, F. A., Qari, M. H. T., & Mostafa, M. E. (1999). A new optimizing technique for preparing lineament density maps. International Journal of Remote Sensing, 20(6), 1073–1085. https://doi.org/10.1080/014311699212858.

    Article  Google Scholar 

  5. Suzen, M. L., & Toprak, V. (1998). Filtering of satellite images in geological lineament analyses: an application to a fault zone in central Turkey. International Journal of Remote Sensing, 19(6), 1101–1114. https://doi.org/10.1080/014311698215621.

    Article  Google Scholar 

  6. Magowe, M., & Carr, J. R. (1999). Relationship between lineaments and ground water occurrence in western Botswana. Ground Water, 37(2), 282–286. https://doi.org/10.1111/j.1745-6584.1999.tb00985.x.

    Article  Google Scholar 

  7. Lattman, L. H., & Parizek, R. R. (1964). Relationship between fracture traces and the occurrence of ground water in carbonate rocks. Journal of Hydrology, 2(2), 73–91. https://doi.org/10.1016/0022-1694(64)90019-8.

    Article  Google Scholar 

  8. Das, S., Gupta, A., & Ghosh, S. (2017). Exploring groundwater potential zones using MIF technique in semi-arid region: A case study of Hingoli district, Maharashtra. Spatial Information Research, 25(6), 749–756. https://doi.org/10.1007/s41324-017-0144-0.

    Article  Google Scholar 

  9. Qari, M. Y. H. T. (1991). Application of landsat TM data to geological studies, Al-Khabt area, southern Arabian shield. Photogrammetric Engineering and Remote Sensing, 57(4), 421–429. https://www.asprs.org/wp-content/uploads/pers/1991journal/apr/1991_apr_421-429.pdf.

  10. Qari, M. Y. H. T., & Şen, Z. (1994). Remotely sensed fracture patterns in southwestern Saudi Arabia and qualitative analysis. Bulletin of the International Association of Engineering Geology, 49, 63–72. https://doi.org/10.1007/BF02595002.

    Article  Google Scholar 

  11. Chang, Y., Song, G., & Hsu, S. (1998). Automatic extraction of ridge and valley axes using the profile recognition and polygon-breaking algorithm. Computers & Geosciences, 24(1), 83–93. https://doi.org/10.1016/S0098-3004(97)00078-2.

    Article  Google Scholar 

  12. Leech, D. P., Treloar, P. J., Lucas, N. S., & Grocott, J. (2003). Landsat TM analysis of fracture patterns: A case study from the Coastal Cordillera of northern Chile. International Journal of Remote Sensing, 24(19), 3709–3726. https://doi.org/10.1080/0143116031000102520.

    Article  Google Scholar 

  13. Nama, E. E. (2004). Lineament detection on Mount Cameroon during the 1999 volcanic eruptions using Landsat ETM. International Journal of Remote Sensing, 25(3), 501–510. https://doi.org/10.1080/0143116031000102557.

    Article  Google Scholar 

  14. Zlatopolsky, A. A. (1992). Program LESSA (lineament extraction and stripe statistical analysis) automated linear image features analysis experimental results. Computers & Geosciences, 18(9), 1121–1126. https://doi.org/10.1016/0098-3004(92)90036-Q.

    Article  Google Scholar 

  15. Zlatopolsky, A. A. (1997). Description of texture orientation in remote sensing data using computer program LESSA. Computers amd Geosciences, 23(1), 45–62. https://doi.org/10.1016/S0098-3004(96)00053-2.

    Article  Google Scholar 

  16. Majumdar, T. J., & Bhattacharya, B. B. (1998). Application of the Haar transform for extraction of linear and anomalous over part of Cambay Basin. India. International Journal of Remote Sensing, 9(12), 1937–1942. https://doi.org/10.1080/01431168808954992.

    Article  Google Scholar 

  17. Costa, R. D., & Starkey, J. (2001). Photo Lin: A program to identify and analyze linear structures in aerial photographs, satellite images and maps. Computers & Geosciences, 27(5), 527–534. https://doi.org/10.1016/S0098-3004(00)00146-1.

    Article  Google Scholar 

  18. Mostafa, M. E., & Bishta, A. Z. (2005). Significance of lineament patterns in rock unit classification and designation: A pilot study on the Gharib-Dara area, northern Eastern Desert, Egypt. International Journal of Remote Sensing, 26(7), 1463–1475. https://doi.org/10.1080/01431160410001705088.

    Article  Google Scholar 

  19. Henderson, D., Ferrill, D. A., & Clarke, K. C. (1996). Mapping geological faults using image processing techniques applied to hill-shaded digital elevation models. In Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation (pp. 240–245). https://doi.org/10.1109/IAI.1996.493760.

  20. Raj, N. J., Prabhakaran, A., & Muthukrishnan, A. (2017). Extraction and analysis of geological lineaments of Kolli hills, Tamil Nadu: A study using remote sensing and GIS. Arabian Journal of Geosciences, 10, 195. https://doi.org/10.1007/s12517-017-2966-4.

    Article  Google Scholar 

  21. Chaabouni, R., Bouaziz, S., Peresson, H., & Wolfgang, J. (2012). Lineament analysis of south Jenein area (southern Tunisia) using remote sensing data and geographic information system. The Egyptian Journal of Remote Sensing and Space Science, 15(2), 197–206. https://doi.org/10.1016/j.ejrs.2012.11.001.

    Article  Google Scholar 

  22. Jacques, P. D., Machado, R., & Nummer, A. R. (2012). A comparison for a multiscale study of structural lineaments in southern Brazil: LANDSAT-7 ETM and shaded relief images from SRTM3-DEM. Anais da Academia Brasileira de Ciencias, 84(4), 931–942. https://doi.org/10.1590/S0001-37652012000400008.

    Article  Google Scholar 

  23. Hung, L. Q., Batelaan, O., & De Smedt, F. (2005). Extraction and analysis, comparison of LANDSAT ERM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam. Proceedings of SPIE. https://doi.org/10.1117/12.627699.

    Google Scholar 

  24. Qari, M. H. T. (2011). Lineament extraction from multi-resolution satellite imagery: A pilot study on Wadi Bani Malik, Jeddah, Kingdom of Saudi Arabia. Arabian Journal of Geosciences, 4, 1363–1371. https://doi.org/10.1007/s12517-009-0116-3.

    Article  Google Scholar 

  25. Widdowson, M., & Mitchell, C. (1999). Large-scale stratigraphical, structural and geomorphological constraints for earthquakes in the southern Deccan Traps, India: the case for denudationally-driven seismicity. Memoir Geological Society of India, 43, 425–452.

    Google Scholar 

  26. Subrahmanya, K. R. (1998). Tectono-magmatic evolution of the west coast of India. Gondwana Research, 1(3–4), 319–327. https://doi.org/10.1016/S1342-937X(05)70847-9.

    Article  Google Scholar 

  27. Cox, K. G. (1983). The Deccan Traps and the Karoo: Stratigraphic implications of possible hot-spot origins. In IAVCEI Abstrsct (Vol. 96), Hamburg.

  28. Geological Survey of India. (1995). Geological Quadrangle Map- 47 E.

  29. Devey, C. W., & Lightfoot, P. C. (1986). Volcanological and tectonic control of stratigraphy and structure in the western Deccan traps. Bulletin of volcanology, 48(4), 195–207. https://doi.org/10.1007/BF01087674.

    Article  Google Scholar 

  30. Das, S. (2017). Signatures of morphotectonic activities in western upland Maharashtra and Konkan region. Unpublished M.Sc. thesis submitted to Savitribai Phule Pune University.

  31. Widdowson, M., & Cox, K. G. (1996). Uplift and erosional history of the Deccan Traps, India: Evidence from laterites and drainage patterns of the Western Ghats and Konkan Coast. Earth and Planetary Science Letters, 137(1–4), 57–69. https://doi.org/10.1016/0012-821X(95)00211-T.

    Article  Google Scholar 

  32. Jenson, S. K., & Domingue, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 1593–1600.

    Google Scholar 

  33. Foni, A., & Seal, D. (2004). Shuttle radar topography mission: An innovative approach to shuttle orbital control. Acta Astronautica, 54(8), 565–570. https://doi.org/10.1016/S0094-5765(03)00227-3.

    Article  Google Scholar 

  34. Sharma, K., Saraf, A. K., Das, J. D., Rawat, V., & Shujat, Y. (2010). SRTM and ASTER DEM characteristics of two areas from Himalayan region. International Geoinformatics Research and Development Journal, 1(3), 25–31. http://www.widm.ca/wp-content/uploads/2017/04/IGRDG-Issue-3-September-2010-4.pdf.

  35. Al-Fugara, A. (2015). Comparison and validation of the recent freely available DEMs over parts of the earth’s lowest elevation area: Dead Sea, Jordan. International Journal of Geosciences, 6, 1221–1232. https://doi.org/10.4236/ijg.2015.611096.

    Article  Google Scholar 

  36. Gajalakshmi, K., & Anantharrama, V. (2015). Comparative study of Cartosat-DEM and SRTM-DEM on elevation data and terrain elements. International Journal of Advanced Remote Sensing and GIS, 4(1), 1361–1366.

    Article  Google Scholar 

  37. Thomas, J., & Prasannakumar, V. (2015). Comparison of basin morphometry derived from topographic maps, ASTER and SRTM DEMs: an example from Kerala, India. Geocarto International, 30(3), 346–364. https://doi.org/10.1080/10106049.2014.955063.

    Article  Google Scholar 

  38. Indian Space Research Organization. (2011). Evaluation of Indian national DEM from Cartosat-1 Data. Summary report, Ver-1.

  39. Reuter, H., Nelson, A., Strobl, P., Mehl, W., & Jarvis, A. (2009). A first assessment of Aster GDEM tiles for absolute accuracy, relative accuracy and terrain parameters. In IGARSS 2009 IEEE International Proceedings of Geoscience and Remote Sensing Symposium (pp. 240–243).

  40. Greenbaum, D. (1985). Review of remote sensing applications to groundwater exploration in basement and regolith. British Geological Survey Report, 18–36.

  41. Hung, L. Q., Dinh, N. Q., Batelaan, O., Tam, V. T., & Lagrou, D. (2002). Remote sensing and GIS-based analysis of cave development in the Suoimuoi catchment (son la - NW Vietnam). Journal of Cave and Karst Studies, 64(1), 23–33. https://caves.org/pub/journal/PDF/V64/v64n1-Hung.pdf.

  42. Das, D. P., Chakraborty, D. K., & Sarkar, K. (2003). Significance of the regional lineament tectonics in the evolution of the Pranhita-Godavari sedimentary basin interpreted from the satellite data. Journal of Asian Earth Sciences, 21(6), 553–556. https://doi.org/10.1016/S1367-9120(02)00025-1.

    Article  Google Scholar 

  43. Edet, A. E., Okereke, C. S., Teme, S. C., & Esu, E. O. (1998). Application of remotesensing data to groundwater exploration: A case study of the Cross River State. SE Nigeria. Hydrogeology Journal, 6(3), 394–404. https://doi.org/10.1007/s100400050162.

    Article  Google Scholar 

  44. Kanungo, D. P., Sarkar, S., & Mehrotra, G. S. (1995). Statistical analysis and tectonic interpretation of the remotely sensed lineament fabric data associated with the North Almora Thrust, Garhwal Himalaya, India. Journal of the Indian Society of Remote Sensing, 23(4), 201–210. https://doi.org/10.1007/BF03024501.

    Article  Google Scholar 

  45. Chandrasekhar, P., Martha, T. R., Venkateswarlu, N., Subramanian, S. K., & Kamaraju, M. V. V. (2011). Regional geological studies over parts of Deccan Syneclise using remote sensing and geophysical data for understanding hydrocarbon prospects. Current Science, 100(1), 95–99. http://www.currentscience.ac.in/Volumes/100/01/0095.pdf.

  46. Masoud, A., & Koike, K. (2011). Auto-detection and integration of tectonically significant lineaments from SRTM DEM and remotely-sensed geophysical data. Journal of Photogrammetry and Remote Sensing, 66(6), 818–832. https://doi.org/10.1016/j.isprsjprs.2011.08.003.

    Article  Google Scholar 

  47. Nag, S. K. (2005). Application of lineament density and hydrogeomorphology to delineate ground water potential zones of Baghmundi block of Purulia district, West Bengal. Journal of the Indian Society of Remote Sensing, 33(4), 521–529. https://doi.org/10.1007/BF02990737.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jung-Sup Um (editor-in-chief, Spatial Information Research) for his valuable suggestions in improving the revised manuscript. Critical review and constructive comments from the anonymous reviewers significantly improved the final paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Das.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 847 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Pardeshi, S.D. Comparative analysis of lineaments extracted from Cartosat, SRTM and ASTER DEM: a study based on four watersheds in Konkan region, India. Spat. Inf. Res. 26, 47–57 (2018). https://doi.org/10.1007/s41324-017-0155-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-017-0155-x

Keywords