Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Analysis of EEG Signal to Classify Sleep Stages Using Machine Learning

  • Original Article
  • Published:
Sleep and Vigilance Aims and scope Submit manuscript

Abstract

Automated classification of sleep stages is in demand to overcome the limitations of manual sleep stage classification. Analyzing sleep stages manually using neurophysiological signals and inspecting visually is very difficult, time-consuming process. Many techniques have been proposed already in the past two decades. Sleep experts, physicians do not have assurance with such techniques concerned with accuracy, specificity and sensitivity. The aim of the paper is to propose an efficient technique for sleep stage classification based on Electroencephalogram (EEG) signals analysis using machine learning algorithms by considering 10 s of epochs. EEG signals have played significant role in automatic sleep stage classification. EEG signals are filtered and decomposed into frequency sub-bands using band-pass filter. Statistical features are extracted and trained with Decision Tree, Support Vector Machine and Random Forest algorithms with different testing dataset percentage. Results show Random Forest algorithm achieves 97.8% of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

EEG:

Electroencephalogram

PSG:

Polysomnography

ECG:

Electrocardiogram

EOG:

Electrooculogram

EMG:

Electromyogram

REM:

Rapid eye movement

NREM:

Non rapid eye movement

References

  1. Pruncnal M, Polak AG. Effect of feature extraction on automobile sleep stage classification by artificial neural network. Metrol Meas Syst. 2017;24(2):229–40. https://doi.org/10.1515/mms-2017-2017-0036.

    Article  Google Scholar 

  2. Vadala R, Deenadayalan H, Ranganathan L, et al. Appropriate BMI criteria for Indian population does it help stratify obstructive sleep apnea (OSA) patients better? Sleep Vigil. 2019;3:139–42. https://doi.org/10.1007/s41782-019-00069-1.

    Article  Google Scholar 

  3. Almuhammadi WS, Aboalayon KAI, Faezipour M. Efficient obstructive sleep apnea classification based on EEG signals. Long Isl Syst Appl Technol. 2015. https://doi.org/10.1109/LISAT.2015.7160186.

    Article  Google Scholar 

  4. Aboalayon KAI, Faezipour M, Almuhammadi WS, Moslehpour S. Sleep stage classification using EEG signal analysis: a comparative survey and new investigations. Entropy. 2016;18:272. https://doi.org/10.3390/e18090272.

    Article  Google Scholar 

  5. Komada Y, Asaoka S, Abe T, Inoue Y. Short sleep duration, sleep disorders and traffic accidents. IATASS Res. 2013;37(1):1–7. https://doi.org/10.1016/j.iatssr.2013.06.001.

    Article  Google Scholar 

  6. Yildrim O, Baloglu UB, Acharya R. A deep learning model for automated sleep stage classification using PSG signals. Int J Environ Res Public Health. 2019;16(4):559. https://doi.org/10.3390/ijerph16040599.

    Article  Google Scholar 

  7. Supratak A, Dong H, Wu C, Guo Y. DeepSleepNet: a model for automated sleep stage scoring based on raw single-channel EEG. IEEE Trans Neural Syst Rehabil Eng. 2017. https://doi.org/10.1109/TNSRE.2017.2721116.

    Article  PubMed  Google Scholar 

  8. Liu G-R, Lo Y-L, Malik J, Sheu Y-C, Wu H-T. Diffuse to fuse EEG spectra-intrensic geometry of sleep dynamics for classification. Biomed Signal Process Control. 2020;55:101576. https://doi.org/10.1016/j.bspc.2019.101576.

    Article  Google Scholar 

  9. Chambon S, Galtier MN, Arnal PJ, Wainri G, Gramfort A. A deep learning architecture for temporal sleep stage classification using multivariate and multimodla time series. IEEE Trans Neural Syst Rahabil Eng. 2018. https://doi.org/10.1109/TNSRE.2018.2813138.

    Article  Google Scholar 

  10. Delorme A, Makeig S. EEGLAB: an open source tool box for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.

    Article  Google Scholar 

  11. Tzimourta KD, Tsimbaris A, Tzioukalia K, Tzallas AT, Tsipouras MG, Asktrakas LG, Giannakeas N. EEG based automatic sleep stage classification. Biomed J Sci Tech Res. 2018. https://doi.org/10.26717/BJSTR.2018.07.001535.

    Article  Google Scholar 

  12. Qureshi S, Vanichayobon S. Evaluate different machine learning techniques for classifying sleep stages on single-channel EEG. In: IEEE 2017 Computer science and software engineering international joint conference, 12–14 July 2017, Nakhon Si Thammarat, Thailand. pp. 1–6. https://doi.org/10.1109/JCSSE.2017.8025949.

  13. Saccá V, Campolo M, Mirarchi D, Gambardella A, Veltri P, Morabito FC. On the classification of EEG signal by using an SVM based algorithm. In: Esposito A, Faudez-Zanuy M, Morabito FC, Pasero E, editors. Multidisciplinary approaches to neural computing, vol. 69. Cham, Switzerland: Springer; 2018. pp. 271–278. https://doi.org/10.1007/978-3-319-56904-8_26.

    Chapter  Google Scholar 

  14. Torse D, Desai V, Khanai R. Classification of EEG signals in a seizure detection system using dual tree complex wavelet transform and least squares support vector machine. Int J Image Graph Signal Process. 2018;10(1):56–64. https://doi.org/10.5815/ijigsp.2018.01.07.

    Article  Google Scholar 

  15. Chen X, Wang B, Wang X. Automatic sleep stage classification for daytime nap based on hopfieldneural network. In Proceedings of the Chinese control and decision conference (CCDC), Guiyang, China, 25–27 May 2013. pp. 2671–2674. https://doi.org/10.1109/CCDC.2013.6561393.

  16. Obayya M, Abou-Chadi F. Automatic classification of sleep stages using EEG records based on Fuzzy c-means (FCM) algorithm. In: Radio Science Conference (NRSC), 2014 31st National. 2014. pp. 265–272. https://doi.org/10.1109/NRSC.2014.6835085.

  17. Guohun Z, Yan L, Wen PP. Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal. IEEE J Biomed Health Inform. 2014;18(6):1813–21. https://doi.org/10.1109/JBHI.2014.2303991.

    Article  Google Scholar 

  18. Liang S-F, Kuo C-E, Hu Y-H, Cheng Y-S. A rule-based automatic sleep staging method. J. Neurosci. Methods. 2012;205(1):169–76. https://doi.org/10.1016/j.jneumeth.2011.12.022.

    Article  PubMed  Google Scholar 

  19. Ebrahimi F, Mikaeili M, Estrada E, Nazeran H. Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients. In: Proceeding of IEEE EMBC. 2008. pp. 1151–1154. https://doi.org/10.1109/IEMBS.2008.4649365.

  20. Aboalayon KAI, Almuhammadi WS, Faeziour M. A comparison of different machine learning algorithms using single channel EEG signal for classifying human sleep stages. Long Isl Syst Appl Technol. 2015. https://doi.org/10.1109/LISAT.2015.7160185.

    Article  Google Scholar 

  21. Karimzadeh F, Boostani R, Seraj E, Sameni R. A distributed classification procedure for automatic sleep stage scoring based on instantaneous electroencephalogram phase and envelope features. IEEE Trans Neural Syst Rehabil Eng. 2018. https://doi.org/10.1109/TNSRE.2017.2775058.

    Article  PubMed  Google Scholar 

  22. Maeda M, Takajyo A, Inoue K, Kumamaru K, Matsuoka S. Time-Frequency analysis of human sleep EEG and its application to feature extraction about biological rhythm. In: Proceedings of the SICE annual conference, Takamastu, Japan, 17–20 September 2007. pp. 1939–1944. https://doi.org/10.1109/SICE.007.4421304.

  23. Memar P, Faradji F. A novel multi-class eeg-based sleep stage classification system. IEEE Trans Neural Syst Rehabil Eng. 2018. https://doi.org/10.1109/TNSRE.2017.2776149.

    Article  PubMed  Google Scholar 

  24. Tripathy RK, Acharya UR. Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework. Elseivier Biocybern Biomed Eng. 2018. https://doi.org/10.1016/j.bbe.2018.05.005.

    Article  Google Scholar 

  25. Koch H, Jennum P, Christensen JAE. Automatic sleep classification using adaptive segmentation reveals an increased number of rapid eye movement sleep transitions. J Res Pap. 2018. https://doi.org/10.1111/jsr.12780.

    Article  Google Scholar 

  26. Fraiwan L, Lweesy K, Khasawneh N, Fraiwan M, Wenz H, Dickhaus H. Time frequency analysis for automated sleep stage identification in full term and preterm neonates. J Med Syst. 2011;35:693–702. https://doi.org/10.1007/s10916-009-946-2.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. D. A. Torse and Dr. Anil B. Gavade for their valuable guidance and inputs.

Funding

No funding been considered for this research work

Author information

Authors and Affiliations

Authors

Contributions

Analysis of EEG data is carried out using preprocessing and extracting features. EEG data is classified using machine learning algorithms.

Corresponding author

Correspondence to Sagar Santaji.

Ethics declarations

Ethical statement

Clinical data referred to carryout the analysis of sleep stages is collected by consulting Dr.Chandrashekhar, Assosciate Professor, Belgaum Institute of Medical Sciences, Belagavi, Karnataka, India.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santaji, S., Desai, V. Analysis of EEG Signal to Classify Sleep Stages Using Machine Learning. Sleep Vigilance 4, 145–152 (2020). https://doi.org/10.1007/s41782-020-00101-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41782-020-00101-9

Keywords