Abstract
Spiking neural P systems are a class of distributed parallel computing models, inspired by the way in which neurons process information and communicate with each other by means of spikes. In 2007, Freund and Verlan developed a formal framework for P systems to capture most of the essential features of P systems and to define their functioning in a formal way. In this work, we present an extension of the formal framework related to spiking neural P systems by considering the applicability of each rule to be controlled by specific conditions on the current contents of the cells. The main objective of this extension is to also capture spiking neural P systems in the formal framework. Another goal of our extension is to incorporate the notions of input and output. Finally, we also show that in the case of spiking neural P systems, the rules have a rather simple form and in that way spiking neural P systems correspond to vector addition systems where the application of rules is controlled by semi-linear sets.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alhazov, A., Freund, R., Ivanov, S., Oswald, M., & Verlan, S. (2015). Extended spiking neural P systems with white hole rules. In Proceedings of the Thirteenth Brainstorming Week on Membrane Computing (pp. 45–62). Sevilla, ETS de Ingeniería Informática, 2–6 de Febrero, 2015.
Alhazov, A., Freund, R., Oswald, M., & Slavkovik, M. (2006). Extended spiking neural P systems. In H. J. Hoogeboom, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Membrane Computing, 7th International Workshop, WMC 2006, Leiden, The Netherlands, July 17–21, 2006, Revised, Selected, and Invited Papers, Lecture Notes in Computer Science (Vol. 4361, pp. 123–134). Springer: Berlin. https://doi.org/10.1007/11963516_8
Cabarle, F. G. C., Adorna, H. N., Jiang, M., & Zeng, X. (2017). Spiking neural P systems with scheduled synapses. IEEE Transactions on Nanobioscience, 16(8), 792–801.
Cabarle, F. G. C., Adorna, H. N., Pérez-Jiménez, M. J., & Song, T. (2015). Spiking neural P systems with structural plasticity. Neural Computing and Applications, 26(8), 1905–1917.
Cavaliere, M., Ibarra, O. H., Păun, Gh, Egecioglu, O., Ionescu, M., & Woodworth, S. (2009). Asynchronous spiking neural P systems. Theoretical Computer Science, 410(24–25), 2352–2364.
Chen, H., Ionescu, M., Ishdorj, T. O., Păun, A., Păun, Gh, & Pérez-Jiménez, M. (2008). Spiking neural P systems with extended rules: Universality and languages. Natural Computing, 7(2), 147–166.
Csuhaj-Varjú, E., & Verlan, S. (2017). Bi-simulation between P colonies and P systems with multi-stable catalysts. In M. Gheorghe, G. Rozenberg, A. Salomaa, C. Zandron (Eds.), Membrane Computing - 18th International Conference, CMC 2017, Bradford, UK, July 25–28, 2017, Revised Selected Papers, Lecture Notes in Computer Science (Vol. 10725, pp. 105–117). Springer: Berlin.
Freund, R. (2019). A general framework for sequential grammars with control mechanisms. In M. Hospodár, G. Jirásková, S. Konstantinidis (Eds.), Descriptional Complexity of Formal Systems - 21st IFIP WG 1.02 International Conference, DCFS 2019, Košice, Slovakia, July 17–19, 2019, Proceedings, Lecture Notes in Computer Science (Vol. 11612, pp. 1–34). Springer: Berlin. https://doi.org/10.1007/978-3-030-23247-4_1
Freund, R., Ivanov, S., & Verlan, S. (2015). P systems with generalized multisets over totally ordered Abelian groups. In G. Rozenberg, A. Salomaa, J. M. Sempere, C. Zandron (Eds.), Membrane Computing - 16th International Conference, CMC 2015, Valencia, Spain, August 17–21, 2015, Revised Selected Papers, Lecture Notes in Computer Science (Vol. 9504, pp. 117–136). Springer: Berlin. https://doi.org/10.1007/978-3-319-28475-0_9
Freund, R., Pérez-Hurtado, I., Riscos-Núñez, A., & Verlan, S. (2013). A formalization of membrane systems with dynamically evolving structures. International Journal of Computer Mathematics, 90(4), 801–815. https://doi.org/10.1080/00207160.2012.748899.
Freund, R., & Verlan, S. (2007). A formal framework for static (tissue) P systems. In G. Eleftherakis, P. Kefalas, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Membrane Computing, 8th International Workshop, WMC 2007, Thessaloniki, Greece, June 25–28, 2007 Revised Selected and Invited Papers, Lecture Notes in Computer Science (Vol. 4860, pp. 271–284). Springer: Berlin. https://doi.org/10.1007/978-3-540-77312-2_17
Freund, R., & Verlan, S. (2011). (tissue) P systems working in the k-restricted minimally or maximally parallel transition mode. Natural Computing, 10(2), 821–833.
Ibarra, O. H., Păun, A., & Rodríguez-Patón, A. (2009). Sequential SNP systems based on min/max spike number. Theoretical Computer Science, 410(30–32), 2982–2991.
Ibarra, O. H., Păun, A., Păun, Gh, Rodríguez-Patón, A., Sosík, P., & Woodworth, S. (2007). Normal forms for spiking neural P systems. Theoretical Computer Science, 372(2–3), 196–217. https://doi.org/10.1016/j.tcs.2006.11.025.
Ionescu, M., Păun, Gh, & Yokomori, T. (2007). Spiking neural P systems with an exhaustive use of rules. International Journal of Unconventional Computing, 3(2), 135–154.
Ionescu, M., Păun, Gh., Pérez Jiménez, M.d.J., & Rodríguez Patón, A. (2011). Spiking neural P systems with several types of spikes. In Proceedings of the Ninth Brainstorming Week on Membrane Computing (pp. 183–192). Sevilla, ETS de Ingeniería Informática. Fénix Editora.
Ionescu, M., Păun, Gh, & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71(2–3), 279–308.
Jiang, Y., Su, Y., & Luo, F. (2019). An improved universal spiking neural P system with generalized use of rules. Journal of Membrane Computing, 1(4), 270–278.
Pan, L., & Păun, Gh. (2009). Spiking neural P systems with anti-spikes. International Journal of Computers Communications & Control, 4(3), 273–282.
Pan, L., Păun, Gh, Zhang, G., & Neri, F. (2017). Spiking neural P systems with communication on request. International Journal of Neural Systems, 27(08), 1750042.
Pan, L., Păun, Gh, & Song, B. (2016). Flat maximal parallelism in P systems with promoters. Theoretical Computer Science, 623, 83–91. https://doi.org/10.1016/j.tcs.2015.10.027.
Pan, L., Wu, T., & Zhang, Z. (2016). A bibliography of spiking neural P systems. Bulletin of the International Membrane Computing Society, 1, 63–78.
Pan, L., Zeng, X., Zhang, X., & Jiang, Y. (2012). Spiking neural P systems with weighted synapses. Neural Processing Letters, 35(1), 13–27.
Peng, H., & Wang, J. (2019). Coupled neural P systems. IEEE Transactions on Neural Networks and Learning Systems, 30(6), 1672–1682.
Peng, H., Yang, J., Wang, J., Wang, T., Sun, Z., Song, X., et al. (2017). Spiking neural P systems with multiple channels. Neural Networks, 95, 66–71. https://doi.org/10.1016/j.neunet.2017.08.003.
Păun, Gh, Rozenberg, G., & Salomaa, A. (Eds.). (2010). The Oxford Handbook of Membrane Computing. Oxford, England: Oxford University Press.
Rong, H., Wu, T., Pan, L., & Zhang, G. (2018). Spiking neural P systems: Theoretical results and applications. In: C. G. Díaz, A. Riscos-Núñez, Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Enjoying Natural Computing - Essays Dedicated to Mario de Jesús Pérez-Jiménez on the Occasion of His 70th Birthday, Lecture Notes in Computer Science (Vol. 11270, pp. 256–268). Springer: Berlin. https://doi.org/10.1007/978-3-030-00265-7_20
Song, T., Rodríguez-Patón, A., Zheng, P., & Zeng, X. (2017). Spiking neural P systems with colored spikes. IEEE Transactions on Cognitive and Developmental Systems, 10(4), 1106–1115.
Song, X., Wang, J., Peng, H., Ning, G., Sun, Z., Wang, T., et al. (2018). Spiking neural P systems with multiple channels and anti-spikes. BioSystems, 169–170, 13–19. https://doi.org/10.1016/j.biosystems.2018.05.004.
Verlan, S. (2013). Using the formal framework for P systems. In A. Alhazov, S. Cojocaru, M. Gheorghe, Yu. Rogozhin, G. Rozenberg, A. Salomaa (Eds.), Membrane Computing - 14th International Conference, CMC 2013, Chişinău, Republic of Moldova, August 20-23, 2013, Revised Selected Papers, Lecture Notes in Computer Science (Vol. 8340, pp. 56–79). Springer: Berlin. Invited paper
Verlan, S., Freund, R., Alhazov, A., & Pan, L. (2019). A formal framework for spiking neural P systems. In Gh. Păun (Ed.), Proceedings of the 20th International Conference on Membrane Computing, CMC20, August 5–8, 2019, Curtea de Argeş, Romania (pp. 523–535).
Verlan, S., & Quiros, J. (2012). Fast hardware implementations of P systems. In E. Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, G. Vaszil (Eds.), Membrane Computing - 13th International Conference, CMC 2012, Budapest, Hungary, August 28-31, 2012, Revised Selected Papers, Lecture Notes in Computer Science (Vol. 7762, pp. 404–423). Springer: Berlin.
Wang, J., Hoogeboom, H. J., Pan, L., Păun, Gh, & Pérez-Jiménez, M. J. (2010). Spiking neural P systems with weights. Neural Computation, 22(10), 2615–2646. https://doi.org/10.1162/NECO_a_00022.
Wu, T., Bîlbîe, F. D., Păun, A., Pan, L., & Neri, F. (2018). Simplified and yet Turing universal spiking neural P systems with communication on request. International Journal of Neural Systems, 28(08), 1850013.
Wu, T., Păun, A., Zhang, Z., & Pan, L. (2018). Spiking neural P systems with polarizations. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3349–3360.
Wu, T., Zhang, Z., Păun, Gh, & Pan, L. (2016). Cell-like spiking neural P systems. Theoretical Computer Science, 623, 180–189.
Acknowledgements
The ideas for this paper were discussed during the stay of Artiom Alhazov and Rudolf Freund in Paris at Créteil with Sergey Verlan in summer 2018, while Rudolf Freund was a guest professor supported by the Université Paris Est Créteil.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Verlan, S., Freund, R., Alhazov, A. et al. A formal framework for spiking neural P systems. J Membr Comput 2, 355–368 (2020). https://doi.org/10.1007/s41965-020-00050-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41965-020-00050-2