Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Research issues in mining user behavioral rules for context-aware intelligent mobile applications

  • Original Article
  • Published:
Iran Journal of Computer Science Aims and scope Submit manuscript

Abstract

Context awareness in smart mobile applications is a growing area of study because of its intelligence in the applications. To build context-aware intelligent applications, mining contextual behavioral rules of individual smartphone users utilizing their phone log data is the key. However, to mine these rules, a number of issues, such as the quality of smartphone data, understanding the relevancy of contexts, discretization of continuous contextual data, discovery of useful behavioral rules of individuals and their ordering, knowledge-based interactive post-mining for semantic understanding, and dynamic updating and management of rules according to their present behavior, are investigated. In this paper, we briefly discuss these issues and their potential solution directions for mining individuals’ behavioral rules, for the purpose of building various context-aware intelligent mobile applications. We also summarize a number of real-life rule-based applications that intelligently assist individual smartphone users according to their behavioral rules in their daily activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Agrawal, R., Srikant, R..: Fast algorithms for mining association rules. In: Proceedings of the International Joint Conference on Very Large Data Bases, vol. 1215, pp. 487–499. Santiago (1994)

  2. Baeza-Yates, R., Jiang, D., Silvestri, F., Harrison, B.: Predicting the next app that you are going to use. In: Proceedings of the 8th ACM International Conference on Web Search and Data Mining, pp. 285–294. ACM, New York (2015)

  3. Bayir, M.A., Demirbas, M., Cosar, A.: A web-based personalized mobility service for smartphone applications. Comput. J. 54(5), 800–814 (2010)

    Article  Google Scholar 

  4. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl. Based Syst. 46, 109–132 (2013)

    Article  Google Scholar 

  5. Chang, Y.-J., Tang, J.C.: Investigating mobile users’ ringer mode usage and attentiveness and responsiveness to communication. In: Proceedings of the International Conference on Human-Computer Interaction with Mobile Devices and Services, Copenhagen, Denmark, pp. 6–15. ACM, New York (2015)

  6. Dekel, A., Nacht, D., Kirkpatrick, S.: Minimizing mobile phone disruption via smart profile management. In: Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services, p. 43. ACM, New York (2009)

  7. Dey, A.K.: Understanding and using context. Pers. Ubiquitous Comput. 5(1), 4–7 (2001)

    Article  Google Scholar 

  8. Do, T.-M.-T., Gatica-Perez, D.: By their apps you shall understand them: mining large-scale patterns of mobile phone usage. In: Proceedings of the International Conference on Mobile and Ubiquitous Multimedia, Limassol, Cyprus. ACM, New York (2010)

  9. Fournier-Viger, P., Tseng, V.S.: Mining top-K non-redundant association rules. In: International Symposium on Methodologies for Intelligent Systems, pp. 31–40. Springer, Berlin (2012)

  10. Freitas, A.A.: Understanding the crucial differences between classification and discovery of association rules: a position paper. ACM SIGKDD Explor. Newsl. 2(1), 65–69 (2000)

    Article  MathSciNet  Google Scholar 

  11. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845–869 (2014)

    Article  MATH  Google Scholar 

  12. Grosan, C., Abraham, A.: Rule-based expert systems. Intelligent Systems, pp. 149–185 (2011)

  13. Halvey, M., Keane, M.T., Smyth, B.: Time-based segmentation of log data for user navigation prediction in personalization. In: Proceedings of the International Conference on Web Intelligence, pp. 636–640. IEEE Computer Society, Washington, DC (2005)

  14. Jayarajah, K., Kauffman, R., Misra, A.: Exploring variety seeking behavior in mobile users. In: Proceedings of the International Joint Conference on Pervasive and Ubiquitous Computing, Seattle, pp. 385–390. ACM, New York (2014)

  15. Kanjo, E., Kuss, D.J., Ang, C.S.: Notimind: utilizing responses to smart phone notifications as affective sensors. IEEE Access 5, 22023–22035 (2017)

    Article  Google Scholar 

  16. Khalil, A., Connelly, K.: Improving cell phone awareness by using calendar information. In: Proceedings of the IFIP Conference on Human-Computer Interaction, pp. 588–600. Springer, Berlin (2005)

  17. Kim, J., Mielikäinen, T.: Conditional log-linear models for mobile application usage prediction. In: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 672–687. Springer, Berlin (2014)

  18. Lee, S., Seo, J., Lee, G..: An adaptive speed-call list algorithm and its evaluation with esm. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2019–2022. ACM, New York (2010)

  19. Liu, B., Kong, D., Cen, L., Zhenqiang, G.N., Jin, H., Xiong, H.: Personalized mobile app recommendation: Reconciling app functionality and user privacy preference. In: Proceedings of the 8th ACM International Conference on Web Search and Data Mining, pp. 315–324. ACM, New York (2015)

  20. Ma, H., Cao, H., Yang, Q., Chen, E., Tian, J.: A habit mining approach for discovering similar mobile users. In: Proceedings of the International Conference on World Wide Web, Lyon, pp. 231–240. ACM, New York (2012)

  21. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intell. Syst. 16(2), 72–79 (2001)

    Article  Google Scholar 

  22. Mehrotra, A., Hendley, R., Musolesi, M.: Prefminer: mining user’s preferences for intelligent mobile notification management. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1223–1234. ACM, New York (2016)

  23. Mehrotra, A., Musolesi, M., Hendley, R., Pejovic, V.: Designing content-driven intelligent notification mechanisms for mobile applications. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 813–824. ACM, New York (2015)

  24. Mukherji, A., Srinivasan, V.: Adding intelligence to your mobile device via on-device sequential pattern mining. In: Proceedings of the International Joint Conference on Pervasive and Ubiquitous Computing, Seattle, pp. 1005–1014. ACM, New York (2014)

  25. Ozer, M., Keles, I., Toroslu, H., Karagoz, P., Davulcu, H.: Predicting the location and time of mobile phone users by using sequential pattern mining techniques. Comput. J. 59(6), 908–922 (2016)

    Article  Google Scholar 

  26. Paireekreng, W., Rapeepisarn, K., Wong, K.W.: Time-based personalised mobile game downloading. In: Transactions on Edutainment II, pp. 59–69 (2009)

  27. Park, M.-H., Hong, J.-H., Cho, S.-B.: Location-based recommendation system using bayesian user’s preference model in mobile devices. In: Proceedings of the International Conference on Ubiquitous Intelligence and Computing, pp. 1130–1139. Springer, Berlin (2007)

  28. Pejovic, V., Musolesi, M.: Interruptme: designing intelligent prompting mechanisms for pervasive applications. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 897–908. ACM, New York (2014)

  29. Phithakkitnukoon, S., Dantu, R.: Towards ubiquitous computing with call prediction. ACM SIGMOBILE Mobile Comput. Commun. Rev. 15(1), 52–64 (2011)

    Article  Google Scholar 

  30. Phithakkitnukoon, S., Dantu, R., Claxton, R., Eagle, N.: Behavior-based adaptive call predictor. ACM Trans. Auton. Adapt. Syst. 6(3), 21 (2011)

    Article  Google Scholar 

  31. Phithakkitnukoon, S., Horanont, T.: Activity-aware map: Identifying human daily activity pattern using mobile phone data. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) Human Behavior Understanding. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg

  32. Plessas, A., Stefanis, V., Komninos, A., Garofalakis, J.: Field evaluation of context aware adaptive interfaces for efficient mobile contact retrieval. Pervasive Mobile Comput. 35, 51–64 (2017)

    Article  Google Scholar 

  33. Quinlan, J.R.: C4.5: Programs for machine learning. Machine Learning, Morgan Kaufmann Publishers, Burlington (1993)

  34. Rawassizadeh, R., Momeni, E., Dobbins, C., Gharibshah, J., Pazzani, M.: Scalable daily human behavioral pattern mining from multivariate temporal data. IEEE Trans. Knowl. Data Eng. 28(11), 3098–3112 (2016)

    Article  Google Scholar 

  35. Ross, R.G.: Decision rules vs. behavioral rules. Bus. Rules J. 14 (2013)

  36. Sarker, I.H.: Mobile data science: towards understanding data-driven intelligent mobile applications. EAI Endorsed Transactions on Scalable Information Systems (2018)

  37. Sarker, I.H.: Silentphone: Inferring user unavailability based opportune moments to minimize call interruptions. EAI Endorsed Transactions on Mobile Communications and Applications (2018)

  38. Sarker, I.H.: Understanding the role of data-centric social context in personalized mobile applications. EAI Endorsed Transactions on Context-aware Systems and Applications (2018)

  39. Sarker, I.H, Colman, A., Kabir, M.A., Han, J.: Phone call log as a context source to modeling individual user behavior. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (Ubicomp): Adjunct, Germany, pp. 630–634. ACM, New York (2016)

  40. Sarker, I.H., Colman, A., Kabir, M.A., Han, J.: Individualized time-series segmentation for mining mobile phone user behavior. Comput. J. Oxf. Univ. UK 61(3), 349–368 (2018)

    Google Scholar 

  41. Sarker, I.H., Kabir, M.A., Colman, A., Han, J.: An improved naive bayes classifier-based noise detection technique for classifying user phone call behavior. In: Proceedings of the Australasian Conference on Data Mining, pp. 72–85. Springer, Singapore (2017)

  42. Sarker, I.H., Kabir, M.A., Colman, A., Han, J.: Understanding recency-based behavior model for individual mobile phone users. In: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers, USA, pp. 916–921. ACM, New York (2017)

  43. Sarker, I.H., Salim, F.D.: Mining user behavioral rules from smartphone data through association analysis. In: Proceeding of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 450–461. Springer, Cham (2018)

  44. Shin, D., Lee, J., Yeon, J.: Context-aware recommendation by aggregating user context. In: IEEE Conference on Commerce and Enterprise Computing, Vienna, pp. 423–430. IEEE Computer Society, Washington, DC (2009)

  45. Srinivasan, V., Moghaddam, S., Mukherji, A.: Mobileminer: mining your frequent patterns on your phone. In: ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, New York (2014)

  46. Stefanis, V., Plessas, A., Komninos, A., Garofalakis, J.: Frequency and recency context for the management and retrieval of personal information on mobile devices. Pervasive Mobile Comput. 15, 100–112 (2014)

    Article  Google Scholar 

  47. Turner, L.D., Allen, S.M., Whitaker, R.M.: Push or delay? decomposing smartphone notification response behaviour. In: Salah, A., Kröse, B., Cook, D. (eds.) Human Behavior Understanding. Lecture Notes in Computer Science, vol 9277, pp. 69–83. Springer, Cham (2015)

  48. International Telecommunication Union: Measuring the information society. In: Technical report (2015). http://www.itu.int/en/ITU-D/Statistics/Documents/publications/misr2015/MISR2015-w5.pdf

  49. Zheng, V.W., Cao, B., Zheng, Y., Xie, X., Yang, Q.: Collaborative filtering meets mobile recommendation: a user-centered approach. AAAI 10, 236–241 (2010)

    Google Scholar 

  50. Zhu, H., Cao, H., Chen, E., Xiong, H., Tian, J.: Exploiting enriched contextual information for mobile app classification. In: Proceedings of the 21st ACM international conference on Information and knowledge management, pp. 1617–1621. ACM, New York (2012)

  51. Zhu, H., Chen, E.: Mining mobile user preferences for personalized context-aware recommendation. ACM Trans. Intell. Syst. Technol. 5(4) (2014)

  52. Zhu, H., Chen, E., Xiong, H., Cao, H., Tian, J.: Mobile app classification with enriched contextual information. IEEE Trans. Mobile Comput. 13(7), 1550–1563 (2014)

    Article  Google Scholar 

  53. Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study. Artif. Intell. Rev. 22(3), 177–210 (2004)

    Article  MATH  Google Scholar 

  54. Zulkernain, S., Madiraju, P., Ahamed, S.I., Stamm, K.: A mobile intelligent interruption management system. J. UCS 16(15), 2060–2080 (2010)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Jun Han, Swinburne University of Technology, Australia, Dr. Alan Colman, Swinburne University of Technology, Australia, and Dr. Ashad Kabir, Charles Sturt University, Australia, for their relevant discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqbal H. Sarker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarker, I.H. Research issues in mining user behavioral rules for context-aware intelligent mobile applications. Iran J Comput Sci 2, 41–51 (2019). https://doi.org/10.1007/s42044-018-0026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42044-018-0026-1

Keywords