Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Confidence interval for normal means in meta-analysis based on a pretest estimator

  • Original Paper
  • Stein Estimation and Statistical Shrinkage Methods
  • Published:
Japanese Journal of Statistics and Data Science Aims and scope Submit manuscript

Abstract

Meta-analysis is a statistical method to summarize quantitative results from a set of published studies. Recently, a frequentist estimator was proposed for individual studies’ means in terms of the pretest (preliminary test) estimator. However, the confidence interval has not been considered yet for the pretest estimator for meta-analysis. In this paper, a novel approach to construct a CI is considered based on the pretest estimator for meta-analysis. By pivoting the cumulative distribution function of the pretest estimator, we define an explicit formula of the CI. Furthermore, we show that the coverage probability of the CI controls the nominal confidence level both theoretically and numerically. To facilitate the proposed estimator and CI, we have implemented the computational tools in the R package “meta.shrinkage”. Finally, three datasets are analyzed to illustrate the proposed CI in real meta-analyses. The R code to produce all the numerical results of the paper is given in Supplementary Materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to thank the special feature editor and two reviewers for their insightful comments on our paper. Emura T was supported financially by JSPS KAKENHI (22K11948; 20H04147) and Konno Y was supported financially JSPS KAKENHI (19K11867). An initial draft of this manuscript was presented at a Workshop in Japan Statistics Research Institute (Hosei University) hosted by Toshihiro Abe. Comments from the audience helped improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Emura.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

42081_2023_221_MOESM1_ESM.r

Simulation results for the CP (Table 1) (R 2 KB)

42081_2023_221_MOESM2_ESM.r

Plot of CP of the Wald CI and the pivot CI (Fig. 2) (R 35 KB)

42081_2023_221_MOESM3_ESM.r

The CP of the proposed CI under estimation error (Fig. 3) (R 9 KB)

42081_2023_221_MOESM4_ESM.r

Data analysis (Section 5) (R 2 KB)

42081_2023_221_MOESM5_ESM.r

Graph of the CDF of the PT estimator (Fig. 1) (R 3 KB)

Appendices

Appendices

1.1 Appendix A: The proof of Lemma 1

We let \({c}_{{\lambda }_{i}}=P\left({\mu }_{i}\in \left[{\delta }_{i}^{\mathrm{PT}}-{z}_{\gamma /2}{\sigma }_{i}, {\delta }_{i}^{\mathrm{PT}}+{z}_{\gamma /2}{\sigma }_{i}\right]\right)\).

We first consider the case of \(\alpha \ge \gamma\) (Case 1). Then

$$\begin{aligned}{c}_{{\lambda_{i} }} =& P\left( { - z_{\gamma /2} \le \frac{{\delta_{i}^{{{\text{PT}}}} - \mu_{i} }}{{\sigma_{i} }} \le z_{\gamma /2} } \right)\\ =& P\left( { - z_{\gamma /2} \le \frac{{Y_{i} - \mu_{i} }}{{\sigma_{i} }} \le z_{\gamma /2} , \left| {\frac{{Y_{i} }}{{\sigma_{i} }}} \right| > z_{\alpha /2} } \right) + P\left( { - z_{\gamma /2} \le \frac{{\mu_{i} }}{{\sigma_{i} }} \le z_{\gamma /2} , \left| {\frac{{Y_{i} }}{{\sigma_{i} }}} \right| \le z_{\alpha /2} } \right)\end{aligned}$$
$$\begin{aligned} =& P\left( { - z_{\gamma /2} \le \frac{{Y_{i} - \mu_{i} }}{{\sigma_{i} }} \le z_{\gamma /2} , \left( {\frac{{Y_{i} - \mu_{i} }}{{\sigma_{i} }} + \frac{{\mu_{i} }}{{\sigma_{i} }} < - z_{\alpha /2}\quad {\text{or}}\quad z_{\alpha /2} < \frac{{Y_{i} - \mu_{i} }}{{\sigma_{i} }} + \frac{{\mu_{i} }}{{\sigma_{i} }}} \right)} \right)\\ &\quad + P\left( { - z_{\gamma /2} \le \frac{{\mu_{i} }}{{\sigma_{i} }} \le z_{\gamma /2} , - z_{\alpha /2} \le \frac{{Y_{i} - \mu_{i} }}{{\sigma_{i} }} + \frac{{\mu_{i} }}{{\sigma_{i} }} \le z_{\alpha /2} } \right).\end{aligned}$$

Putting \({Z}_{i}=\left({Y}_{i}-{\mu }_{i}\right)/{\sigma }_{i}\), we have

$$\begin{aligned}{c}_{{\lambda }_{i}}=&P\left(-{z}_{\gamma /2}\le {Z}_{i}\le {z}_{\gamma /2}, \left({Z}_{i}<-{\lambda }_{i}-{z}_{\alpha /2} \quad \mathrm{or} \quad -{\lambda }_{i}+{z}_{\alpha /2}<{Z}_{i}\right)\right)\\ &+P\left(-{z}_{\gamma /2}\le {\lambda }_{i}\le {z}_{\gamma /2}, -{\lambda }_{i}-{z}_{\alpha /2}\le {Z}_{i}\le -{\lambda }_{i}+{z}_{\alpha /2}\right). \end{aligned}$$
(A1)

Since \(\alpha \ge \gamma\) is equivalent to \({z}_{\alpha /2}\le {z}_{\gamma /2}\), one has

$${c}_{{\lambda }_{i}}=\left\{\begin{array}{ll}P\left(-{z}_{\gamma /2}\le {Z}_{i}\le {z}_{\gamma /2}\right) & \quad {\rm if}\quad{\lambda }_{i}<-{z}_{\alpha /2}-{z}_{\gamma /2},\\ P\left(-{z}_{\gamma /2}\le {Z}_{i}<-{\lambda }_{i}-{z}_{\alpha /2}\right) &\quad {\rm if}\quad-{z}_{\alpha /2}-{z}_{\gamma /2}\le {\lambda }_{i}<-{z}_{\gamma /2},\\ P\left(-{z}_{\gamma /2}\le {Z}_{i}<-{\lambda }_{i}-{z}_{\alpha /2}\right)+P\left(-{\lambda }_{i}-{z}_{\alpha /2}\le {Z}_{i}\le -{\lambda }_{i}+{z}_{\alpha /2}\right) & \quad {\rm if}\quad-{z}_{\gamma /2}\le {\lambda }_{i}<{z}_{\alpha /2}-{z}_{\gamma /2},\\ P\left(-{z}_{\gamma /2}\le {Z}_{i}<-{\lambda }_{i}-{z}_{\alpha /2}\right)+P\left(-{\lambda }_{i}+{z}_{\alpha /2}<{Z}_{i}\le {z}_{\gamma /2}\right)\\ \quad +P\left(-{\lambda }_{i}-{z}_{\alpha /2}\le {Z}_{i}\le -{\lambda }_{i}+{z}_{\alpha /2}\right) & \quad {\rm if}\quad{z}_{\alpha /2}-{z}_{\gamma /2}\le {\lambda }_{i}\le {-z}_{\alpha /2}+{z}_{\gamma /2}, \\ P\left(-{\lambda }_{i}+{z}_{\alpha /2}<{Z}_{i}\le {z}_{\gamma /2}\right)+P\left(-{\lambda }_{i}-{z}_{\alpha /2}\le {Z}_{i}\le -{\lambda }_{i}+{z}_{\alpha /2}\right) & \quad {\rm if}\quad{-z}_{\alpha /2}+{z}_{\gamma /2}<{\lambda }_{i}\le {z}_{\gamma /2},\\ P\left(-{\lambda }_{i}+{z}_{\alpha /2}<{Z}_{i}\le {z}_{\gamma /2}\right) & \quad {\rm if}\quad{z}_{\gamma /2}<{\lambda }_{i}\le {z}_{\alpha /2}+{z}_{\gamma /2},\\ P\left(-{z}_{\gamma /2}\le {Z}_{i}\le {z}_{\gamma /2}\right) & \quad {\rm if}\quad{\lambda }_{i}>{z}_{\alpha /2}+{z}_{\gamma /2},\end{array}\right.$$
$$=\left\{\begin{array}{ll}1-\gamma & \quad {\rm if}\quad{\lambda }_{i}<-{z}_{\alpha /2}-{z}_{\gamma /2},\\ \Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right)-\frac{\gamma }{2} & \quad {\rm if}\quad-{z}_{\alpha /2}-{z}_{\gamma /2}\le {\lambda }_{i}<-{z}_{\gamma /2},\\ \Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right)-\frac{\gamma }{2}+\Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right)-\Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right) & \quad {\rm if}\quad-{z}_{\gamma /2}\le {\lambda }_{i}<{z}_{\alpha /2}-{z}_{\gamma /2},\\ \Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right)-\frac{\gamma }{2}+1-\frac{\gamma }{2}-\Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right)\\ \quad +\Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right)-\Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right) & \quad {\rm if}\quad{z}_{\alpha /2}-{z}_{\gamma /2}\le {\lambda }_{i}\le {-z}_{\alpha /2}+{z}_{\gamma /2},\\ 1-\frac{\gamma }{2}-\Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right)+\Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right)-\Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right) & \quad {\rm if}\quad{-z}_{\alpha /2}+{z}_{\gamma /2}<{\lambda }_{i}\le {z}_{\gamma /2},\\ 1-\frac{\gamma }{2}-\Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right) & \quad {\rm if}\quad{z}_{\gamma /2}<{\lambda }_{i}\le {z}_{\alpha /2}+{z}_{\gamma /2},\\ 1-\gamma & \quad {\rm if}\quad{\lambda }_{i}>{z}_{\alpha /2}+{z}_{\gamma /2},\end{array}\right.$$
$$=\left\{\begin{array}{ll}1-\gamma & \quad {\rm if}\quad{\lambda }_{i}<-{z}_{\alpha /2}-{z}_{\gamma /2},\\ \Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right)-\frac{\gamma }{2} & \quad {\rm if}\quad-{z}_{\alpha /2}-{z}_{\gamma /2}\le {\lambda }_{i}<-{z}_{\gamma /2},\\ \Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right)-\frac{\gamma }{2} & \quad {\rm if}\quad-{z}_{\gamma /2}\le {\lambda }_{i}<{z}_{\alpha /2}-{z}_{\gamma /2},\\ 1-\gamma & \quad {\rm if}\quad{z}_{\alpha /2}-{z}_{\gamma /2}\le {\lambda }_{i}\le {-z}_{\alpha /2}+{z}_{\gamma /2},\\ 1-\frac{\upgamma }{2}-\Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right) & \quad {\rm if}\quad{-z}_{\alpha /2}+{z}_{\gamma /2}<{\lambda }_{i}\le {z}_{\gamma /2},\\ 1-\frac{\upgamma }{2}-\Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right) & \quad {\rm if}\quad {z}_{\gamma /2}<{\lambda }_{i}\le {z}_{\alpha /2}+{z}_{\gamma /2},\\ 1-\gamma & \quad {\rm if}\quad{\lambda }_{i}>{z}_{\alpha /2}+{z}_{\gamma /2}.\end{array}\right.$$

This completes the proof for Case 1 (\(\alpha \ge \gamma\)).

Case 2 (\(\alpha <\gamma\) and \({z}_{\alpha /2}\le 2{z}_{\gamma /2}\)) and Case 3 (\(\alpha <\gamma\) and \({z}_{\alpha /2}>2{z}_{\gamma /2}\)) are similar to Case 1 (\(\alpha \ge \gamma\)). In Cases 2 and 3, the formula of \({c}_{{\lambda }_{i}}\) is computed from Eq. (A1), as well. Figure 4 shows two different cases (\({z}_{\alpha /2}\le 2{z}_{\gamma /2}\) and \({z}_{\alpha /2}>2{z}_{\gamma /2}\)) for the ranges of \({\lambda }_{i}\) defined by \(-{z}_{\alpha /2}+{z}_{\gamma /2}\le {\lambda }_{i}\le {z}_{\alpha /2}-{z}_{\gamma /2}\). For the first case, \({c}_{{\lambda }_{i}}\) is calculated only using the first term in Eq. (A1). For the second case, \({c}_{{\lambda }_{i}}\) on \(-{z}_{\alpha /2}+{z}_{\gamma /2}\le {\lambda }_{i}<{z}_{\gamma /2}\) or \({z}_{\gamma /2}<{\lambda }_{i}\le {z}_{\alpha /2}-{z}_{\gamma /2}\) is calculated using the first term, whereas \({c}_{{\lambda }_{i}}\) on \(-{z}_{\gamma /2}\le {\lambda }_{i}\le {z}_{\gamma /2}\) is calculated using the first term and the second term in Eq. (A1). Thus, the proof is completed. \(\hfill\square\)

Fig. 4
figure 4

The ranges of \({\lambda }_{i}\) for \(-{z}_{\alpha /2}+{z}_{\gamma /2}\le {\lambda }_{i}\le {z}_{\alpha /2}-{z}_{\gamma /2}\) used in the first term [] and the second term [] in Eq. (A1)

1.2 Appendix B: The proof of Corollary 1

We now derive the confidence coefficient for Case 2 (\(\alpha <\gamma\) and \({z}_{\alpha /2}\le 2{z}_{\gamma /2}\)). Then

$$\underset{-\infty <{\lambda }_{i}<\infty }{\inf}{c}_{{\lambda }_{i}}=\mathrm{min}\left(\underset{{\lambda }_{i}<-{z}_{\alpha /2}-{z}_{\gamma /2}}{\text{inf}}{c}_{{\lambda }_{i}},\underset{-{z}_{\alpha /2}-{z}_{\gamma /2}\le {\lambda }_{i}<-{z}_{\gamma /2}}{\text{inf}}{c}_{{\lambda }_{i}},\cdots , \underset{{\lambda }_{i}>{z}_{\alpha /2}+{z}_{\gamma /2}}{\text{inf}}{c}_{{\lambda }_{i}}\right).$$

Below, we will compute all the infimums.

(i) For \({\lambda }_{i}<-{z}_{\alpha /2}-{z}_{\gamma /2}\), \({c}_{{\lambda }_{i}}=1-\gamma\). Obviously, we have

$$\underset{{\lambda }_{i}<-{z}_{\alpha /2}-{z}_{\gamma /2}}{\inf}{c}_{{\lambda }_{i}}=1-\gamma .$$

(ii) For \(-{z}_{\alpha /2}-{z}_{\gamma /2}\le {\lambda }_{i}<-{z}_{\gamma /2}\), \({c}_{{\lambda }_{i}}\) is the decreasing function of \({\lambda }_{i}\). Since \({c}_{{\lambda }_{i}}\) is not continuous at \({\lambda }_{i}=-{z}_{\gamma /2}\), we take the limit \({\lambda }_{i}\uparrow -{z}_{\gamma /2}\). Therefore, we have

$$\underset{-{z}_{\alpha /2}-{z}_{\gamma /2}\le {\lambda }_{i}<-{z}_{\gamma /2}}{\inf}{c}_{{\lambda }_{i}}=\underset{{\lambda }_{i}\uparrow -{z}_{\gamma /2}}{\text{lim}}{c}_{{\lambda }_{i}}=\Phi \left({z}_{\gamma /2}-{z}_{\alpha /2}\right)-\frac{\gamma }{2}.$$

(iii) For \(-{z}_{\gamma /2}\le {\lambda }_{i}<-{z}_{\alpha /2}+{z}_{\gamma /2}\), \({c}_{{\lambda }_{i}}\) is the decreasing function of \({\lambda }_{i}\). We have

$$\underset{-{z}_{\gamma /2}\!\le {\lambda }_{i}<-{z}_{\alpha /2}+{z}_{\gamma /2}}{\inf}{c}_{{\lambda }_{i}}=\underset{{\lambda }_{i}\uparrow -{z}_{\alpha /2}+{z}_{\gamma /2}}{\text{lim}}{c}_{{\lambda }_{i}}=\Phi \left({z}_{\alpha /2}-{z}_{\gamma /2}+{z}_{\alpha /2}\right)-\frac{\gamma }{2}=\Phi \left(2{z}_{\alpha /2}-{z}_{\gamma /2}\right)-\frac{\gamma }{2}.$$

(iv) For \(-{z}_{\alpha /2}+{z}_{\gamma /2}\le {\lambda }_{i}\le {z}_{\alpha /2}-{z}_{\gamma /2}\), \({c}_{{\lambda }_{i}}=\Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right)-\Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right)\). Then, we have

$$\frac{\partial }{\partial {\lambda }_{i}}{c}_{{\lambda }_{i}}=-\phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right)+\phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right)$$
$$=\frac{1}{\sqrt{2\pi }}\mathrm{exp}\left(-\frac{{\lambda }_{i}^{2}-2{\lambda }_{i}{z}_{\alpha /2}+{z}_{\alpha /2}^{2}}{2}\right)\left\{-1+\mathrm{exp}\left(-2{\lambda }_{i}{z}_{\alpha /2}\right)\right\}.$$

From this equation, it holds that \(\partial {c}_{{\lambda }_{i}}/\partial {\lambda }_{i}=0\) for \({\lambda }_{i}=0\), \(\partial {c}_{{\lambda }_{i}}/\partial {\lambda }_{i}>0\) for \(-{z}_{\alpha /2}+{z}_{\gamma /2}\le {\lambda }_{i}<0\) and \(\partial {c}_{{\lambda }_{i}}/\partial {\lambda }_{i}<0\) for \(0<{\lambda }_{i}\le {z}_{\alpha /2}-{z}_{\gamma /2}\). That is, \({c}_{{\lambda }_{i}}\) takes minimum at \({\lambda }_{i}=-{z}_{\alpha /2}+{z}_{\gamma /2}\) or \({\lambda }_{i}={z}_{\alpha /2}-{z}_{\gamma /2}\). For \({\lambda }_{i}=-{z}_{\alpha /2}+{z}_{\gamma /2}\) and \({\lambda }_{i}={z}_{\alpha /2}-{z}_{\gamma /2}\), we have \({c}_{{\lambda }_{i}}=\Phi \left(2{z}_{\alpha /2}-{z}_{\gamma /2}\right)-\gamma /2\),

$$\underset{-{z}_{\alpha /2}+{z}_{\gamma /2}\le {\lambda }_{i}\le {z}_{\alpha /2}-{z}_{\gamma /2}}{\inf}{c}_{{\lambda }_{i}}=\Phi \left(2{z}_{\alpha /2}-{z}_{\gamma /2}\right)-\frac{\gamma }{2}.$$

(v) For \({z}_{\alpha /2}-{z}_{\gamma /2}<{\lambda }_{i}\le {z}_{\gamma /2}\), \({c}_{{\lambda }_{i}}\) is the increasing function of \({\lambda }_{i}\). Therefore, we have

$$\underset{{z}_{\alpha /2}-{z}_{\gamma /2}<{\lambda }_{i}\le {z}_{\gamma /2}}{\inf}{c}_{{\lambda }_{i}}=\underset{{\lambda }_{i}\downarrow -{z}_{\alpha /2}+{z}_{\gamma /2}}{\text{lim}}{c}_{{\lambda }_{i}}=\Phi \left(2{z}_{\alpha /2}-{z}_{\gamma /2}\right)-\frac{\gamma }{2}.$$

(vi) For \({z}_{\gamma /2}<{\lambda }_{i}\le {z}_{\alpha /2}+{z}_{\gamma /2}\), \({c}_{{\lambda }_{i}}\) is the increasing function of \({\lambda }_{i}\). Since \({c}_{{\lambda }_{i}}\) is not continuous at \({\lambda }_{i}={z}_{\gamma /2}\), we take limit \({\lambda }_{i}\downarrow {z}_{\gamma /2}\).

$$\underset{{z}_{\gamma /2}\!<{\lambda }_{i}\le {z}_{\alpha /2}+{z}_{\gamma /2}}{\inf}{c}_{{\lambda }_{i}}=\underset{{\lambda }_{i}\downarrow {z}_{\gamma /2}}{\text{lim}}{c}_{{\lambda }_{i}}=1-\frac{\gamma }{2}-\Phi \left(-{z}_{\gamma /2}+{z}_{\alpha /2}\right)=\Phi \left({z}_{\gamma /2}-{z}_{\alpha /2}\right)-\frac{\gamma }{2}.$$

(vii) For \({\lambda }_{i}>{z}_{\alpha /2}+{z}_{\gamma /2}\), \({c}_{{\lambda }_{i}}=1-\gamma\). We trivially have

$$\underset{{\lambda }_{i}>{z}_{\alpha /2}+{z}_{\gamma /2}}{\inf}{c}_{{\lambda }_{i}}=1-\gamma .$$

Using (i)–(vii), and \(\alpha <\gamma\) (equivalent to \({z}_{\alpha /2}>{z}_{\gamma /2}\)), we have

$$\begin{aligned}\underset{-\infty <{\lambda }_{i}<\infty }{\text{inf}}{c}_{{\lambda }_{i}} =&\,\mathrm{min}\left\{1-\gamma ,\Phi \left({z}_{\gamma /2}-{z}_{\alpha /2}\right)-\frac{\gamma }{2},\Phi \left(2{z}_{\alpha /2}-{z}_{\gamma /2}\right)-\frac{\gamma }{2}\right\}\\ =&\,\Phi \left({z}_{\gamma /2}-{z}_{\alpha /2}\right)-\frac{\gamma }{2}. \end{aligned}$$
(B1)

Since \({z}_{\gamma /2}-{z}_{\alpha /2}<{z}_{\gamma /2}\) is equivalent to \(\Phi \left({z}_{\gamma /2}-{z}_{\alpha /2}\right)<\Phi \left({z}_{\gamma /2}\right)\), we have

$$\begin{array}{ll}\Phi \left({z}_{\gamma /2}-{z}_{\alpha /2}\right)-\frac{\gamma }{2}<\Phi \left({z}_{\gamma /2}\right)-\frac{\gamma }{2}=1-\gamma . \end{array}$$
(B2)

This inequality holds for all \(\gamma\) in Case 2 (\(\alpha <\gamma\) and \({z}_{\alpha /2}\le 2{z}_{\gamma /2}\)). For the proofs for Case 1 (\(\alpha \ge \gamma\)) and Case 3 (\(\alpha <\gamma\) and \({z}_{\alpha /2}>2{z}_{\gamma /2}\)), similar calculations can be performed.\(\hfill\square\)

1.3 Appendix C: The proof of Theorem 1

We derive the CDF of \({\delta }_{i}^{\mathrm{PT}}\) as follows:

$$\begin{aligned}F_{{\delta }_{i}^{\mathrm{PT}}}\left(d\right)&= P\left({\delta }_{i}^{\mathrm{PT}}\le d\right)&= P\left({Y}_{i}\le d, \left|\frac{{Y}_{i}}{{\sigma }_{i}}\right|>{z}_{\alpha /2}\right)+P\left(\left|\frac{{Y}_{i}}{{\sigma }_{i}}\right|\le {z}_{\alpha /2}\right)\cdot I\left(d\ge 0\right)\end{aligned}$$
$$ \begin{aligned}&= P\left(\frac{{Y}_{i}-{\mu }_{i}}{{\sigma }_{i}}\le \frac{d-{\mu }_{i}}{{\sigma }_{i}}, \left|\frac{{Y}_{i}-{\mu }_{i}}{{\sigma }_{i}}+\frac{{\mu }_{i}}{{\sigma }_{i}}\right|>{z}_{\alpha /2}\right)\\ &\quad +P\left(\left|\frac{{Y}_{i}-{\mu }_{i}}{{\sigma }_{i}}+\frac{{\mu }_{i}}{{\sigma }_{i}}\right|\le {z}_{\alpha /2}\right)\cdot I\left(d\ge 0\right).\end{aligned}$$

Putting \({Z}_{i}=\left({Y}_{i}-{\mu }_{i}\right)/{\sigma }_{i}\), we have

$$\begin{aligned}F_{{\delta }_{i}^{\mathrm{PT}}}\left(d\right)=& P\left({Z}_{i}\le \frac{d-{\mu }_{i}}{{\sigma }_{i}}, \left({Z}_{i}<-\frac{{\mu }_{i}}{{\sigma }_{i}}-{z}_{\alpha /2} \,\, {\rm or}\,\, -\frac{{\mu }_{i}}{{\sigma }_{i}}+{z}_{\alpha /2}<{Z}_{i}\right)\right)\\&+P\left(-\frac{{\mu }_{i}}{{\sigma }_{i}}-{z}_{\alpha /2}\le {Z}_{i}\le -\frac{{\mu }_{i}}{{\sigma }_{i}}+{z}_{\alpha /2}\right)\cdot I\left(d\ge 0\right)\end{aligned}$$
$$=\left\{\begin{array}{ll}\begin{array}{ll}P\left({Z}_{i}\le \frac{d-{\mu }_{i}}{{\sigma }_{i}}\right) & \quad {\rm if} \quad d \le -{z}_{\alpha /2}{\sigma }_{i},\\ P\left({Z}_{i}<-\frac{{\mu }_{i}}{{\sigma }_{i}}-{z}_{\alpha /2}\right) & \quad {\rm if}\quad -{z}_{\alpha /2}{\sigma }_{i}<d<0,\\ P\left({Z}_{i}<-\frac{{\mu }_{i}}{{\sigma }_{i}}-{z}_{\alpha /2}\right)+P\left(-\frac{{\mu }_{i}}{{\sigma }_{i}}-{z}_{\alpha /2}\le {Z}_{i}\le -\frac{{\mu }_{i}}{{\sigma }_{i}}+{z}_{\alpha /2}\right) & \quad {\rm if} \quad 0\le d<{z}_{\alpha /2}{\sigma }_{i},\\ P\left({Z}_{i}<-\frac{{\mu }_{i}}{{\sigma }_{i}}-{z}_{\alpha /2}\right)+P\left(-\frac{{\mu }_{i}}{{\sigma }_{i}}+{z}_{\alpha /2}<{Z}_{i}\le \frac{d-{\mu }_{i}}{{\sigma }_{i}}\right)\\ \quad +P\left(-\frac{{\mu }_{i}}{{\sigma }_{i}}-{z}_{\alpha /2}\le {Z}_{i}\le -\frac{{\mu }_{i}}{{\sigma }_{i}}+{z}_{\alpha /2}\right)& \quad {\rm if}\quad {z}_{\alpha /2}{\sigma }_{i}\le d.\end{array}\\ \end{array}\right.$$

Since \({Z}_{i}\) is a continuous random variable, \(P\left({Z}_{i}<z\right)=P\left({Z}_{i}\le z\right)\) for \(z\in (-\infty ,\infty )\). Therefore

$${F}_{{\delta }_{i}^{\mathrm{PT}}}\left(d\right)=\left\{\begin{array}{ll}P\left({Z}_{i}\le \frac{d-{\mu }_{i}}{{\sigma }_{i}}\right) & \quad {\rm if}\quad d\le -{z}_{\alpha /2}{\sigma }_{i},\\ P\left({Z}_{i}\le -\frac{{\mu }_{i}}{{\sigma }_{i}}-{z}_{\alpha /2}\right) & \quad {\rm if}\quad -{z}_{\alpha /2}{\sigma }_{i}<d<0,\\ P\left({Z}_{i}\le -\frac{{\mu }_{i}}{{\sigma }_{i}}+{z}_{\alpha /2}\right) & \quad {\rm if}\quad 0 \le d<{z}_{\alpha /2}{\sigma }_{i},\\ P\left({Z}_{i}\le \frac{d-{\mu }_{i}}{{\sigma }_{i}}\right) & \quad {\rm if}\quad {z}_{\alpha /2}{\sigma }_{i}\le d.\end{array}\right.$$
$$=\left\{\begin{array}{ll}\Phi \left(\frac{d-{\mu }_{i}}{{\sigma }_{i}}\right)& \quad {\rm if}\quad d\,\, \le -{z}_{\alpha /2}{\sigma }_{i} \,\, {\rm or} \,\, {z}_{\alpha /2}{\sigma }_{i}\le d,\\ \Phi \left(-\frac{{\mu }_{i}}{{\sigma }_{i}}-{z}_{\alpha /2}\right) & \quad {\rm if}\quad -{z}_{\alpha /2}{\sigma }_{i}<d<0,\\ \Phi \left(-\frac{{\mu }_{i}}{{\sigma }_{i}}+{z}_{\alpha /2}\right) & \quad {\rm if}\quad 0\le d<{z}_{\alpha /2}{\sigma }_{i}.\end{array}\right.$$

The proof is complete. \(\hfill\square\)

1.4 Appendix D: The derivation of the pivot CI

We first review the pivoting method in a general setting. The following lemma is quoted from Theorem 9.2.14 of Casella and Berger (2002):

Lemma 3 (Pivoting a CDF; Casella & Berger, 2002) Let \({\delta }_{i}\) be a discrete statistic with CDF \({F}_{{\delta }_{i}}\left(d|{\mu }_{i}\right)=P\left({\delta }_{i}\le d|{\mu }_{i}\right)\). Let \(\mathcal{D}\) be the sample space of \({\delta }_{i}\). Let \({\gamma }_{1}+{\gamma }_{2}=\gamma\) with \(0<\gamma <1\) be fixed values. Suppose that for each \(d\in \mathcal{D}\), \({\mu }_{i\mathrm{L}}\left(d\right)\) and \({\mu }_{i\mathrm{U}}\left(d\right)\) can be defined as follows.

  • i. If \({F}_{{\delta }_{i}}\left(d|{\mu }_{i}\right)\) is a decreasing function of \({\mu }_{i}\) for each \(d\), define \({\mu }_{i\mathrm{L}}\left(d\right)\) and \({\mu }_{i\mathrm{U}}\left(d\right)\) by \(P\left({\delta }_{i}\le d|{\mu }_{i\mathrm{U}}\left(d\right)\right)={\gamma }_{1}, P\left({\delta }_{i}\ge d|{\mu }_{i\mathrm{L}}\left(d\right)\right)={\gamma }_{2}.\)

  • ii. If \({F}_{{\delta }_{i}}\left(d|{\mu }_{i}\right)\) is an increasing function of \({\mu }_{i}\) for each \(d\), define \({\mu }_{i\mathrm{L}}\left(d\right)\) and \({\mu }_{i\mathrm{U}}\left(d\right)\) by \(P\left({\delta }_{i}\ge d|{\mu }_{i\mathrm{U}}\left(d\right)\right)={\gamma }_{1}, P\left({\delta }_{i}\le d|{\mu }_{i\mathrm{L}}\left(d\right)\right)={\gamma }_{2}.\)

Then, the random interval \(\left[{\mu }_{i\mathrm{L}}\left({\delta }_{i}\right), {\mu }_{i\mathrm{U}}\left({\delta }_{i}\right)\right]\) is a \(100\left(1-\gamma \right)\mathrm{\%}\) CI for \({\mu }_{i}\).

Let \({\gamma }_{1}+{\gamma }_{2}=\gamma\) with \(0<\gamma <1\) being a fixed value. From Eq. (1), the sample space of \({\delta }_{i}^{\mathrm{PT}}\) is \({\delta }_{i}^{\mathrm{PT}}<-{z}_{\alpha /2}{\sigma }_{i}\) or \({\delta }_{i}^{\mathrm{PT}}=0\) or \({\delta }_{i}^{\mathrm{PT}}>{z}_{\alpha /2}{\sigma }_{i}\). We derive \(\left[{L}_{i}^{\mathrm{PT}}, {U}_{i}^{\mathrm{PT}}\right]=\left[{\mu }_{i\mathrm{L}}\left({\delta }_{i}^{\mathrm{PT}}\right), {\mu }_{i\mathrm{U}}\left({\delta }_{i}^{\mathrm{PT}}\right)\right]\) for each of three cases.

For each \({d}_{0}<-{z}_{\alpha /2}{\sigma }_{i}\), \({F}_{{\delta }_{i}^{\mathrm{PT}}}\left({d}_{0}|{\mu }_{i}\right)=\Phi \left\{\left({d}_{0}-{\mu }_{i}\right)/{\sigma }_{i}\right\}\) is the decreasing function of \({\mu }_{i}\). We define \({\mu }_{i\mathrm{L}}\left({d}_{0}\right)\) and \({\mu }_{i\mathrm{U}}\left({d}_{0}\right)\) by

$$P\left({\delta }_{i}^{\mathrm{PT}}\le {d}_{0}|{\mu }_{i\mathrm{U}}\left({d}_{0}\right)\right)=\Phi \left(\frac{{d}_{0}-{\mu }_{i\mathrm{U}}\left({d}_{0}\right)}{{\sigma }_{i}}\right)={\gamma }_{1},$$
$$P\left({\delta }_{i}^{\mathrm{PT}}\ge {d}_{0}|{\mu }_{i\mathrm{L}}\left({d}_{0}\right)\right)=1-P\left({\delta }_{i}^{\mathrm{PT}}<{d}_{0}|{\mu }_{i\mathrm{L}}\left({d}_{0}\right)\right)=1-\Phi \left(\frac{{d}_{0}-{\mu }_{i\mathrm{L}}\left({d}_{0}\right)}{{\sigma }_{i}}\right)={\gamma }_{2}.$$

These are equivalent to

$$\Phi \left(\frac{{d}_{0}-{\mu }_{i\mathrm{U}}\left({d}_{0}\right)}{{\sigma }_{i}}\right)={\gamma }_{1},\quad 1-\Phi \left(\frac{{d}_{0}-{\mu }_{i\mathrm{L}}\left({d}_{0}\right)}{{\sigma }_{i}}\right)={\gamma }_{2}$$

or equivalently

$${\mu }_{i\mathrm{U}}\left({d}_{0}\right)={d}_{0}+{z}_{{\gamma }_{1}}{\sigma }_{i},\quad {\mu }_{i\mathrm{L}}\left({d}_{0}\right)={d}_{0}-{z}_{{\gamma }_{2}}{\sigma }_{i}.$$

Therefore, we have \(\left[{\mu }_{i\mathrm{L}}\left({d}_{0}\right), {\mu }_{i\mathrm{U}}\left({d}_{0}\right)\right]=\left[{d}_{0}-{z}_{{\gamma }_{2}}{\sigma }_{i},{d}_{0}+{z}_{{\gamma }_{1}}{\sigma }_{i}\right]\).

For \({d}_{0}=0\), \({\delta }_{i}^{\mathrm{PT}}\left({d}_{0}|{\mu }_{i}\right)=\Phi \left(-{\mu }_{i}/{\sigma }_{i}+{z}_{\alpha /2}\right)\) is the decreasing function of \({\mu }_{i}\). We define \({\mu }_{i\mathrm{L}}\left({d}_{0}\right)\) and \({\mu }_{i\mathrm{U}}\left({d}_{0}\right)\) by

$$P\left({\delta }_{i}^{\mathrm{PT}}\le 0|{\mu }_{i\mathrm{U}}\left(0\right)\right)=\Phi \left(-\frac{{\mu }_{i\mathrm{U}}\left(0\right)}{{\sigma }_{i}}+{z}_{\alpha /2}\right)={\gamma }_{1},$$
$$P\left({\delta }_{i}^{\mathrm{PT}}\ge 0|{\mu }_{i\mathrm{L}}\left(0\right)\right)=1-P\left({\delta }_{i}^{\mathrm{PT}}<0|{\mu }_{i\mathrm{L}}\left(0\right)\right)=1-\Phi \left(-\frac{{\mu }_{i\mathrm{L}}\left(0\right)}{{\sigma }_{i}}-{z}_{\alpha /2}\right)={\gamma }_{2}.$$

Expanding these equations, we have

$$\Phi \left(-\frac{{\mu }_{i\mathrm{U}}\left(0\right)}{{\sigma }_{i}}+{z}_{\alpha /2}\right)={\gamma }_{1},\quad \Phi \left(-\frac{{\mu }_{i\mathrm{L}}\left(0\right)}{{\sigma }_{i}}-{z}_{\alpha /2}\right)={\gamma }_{2.}$$

They are equivalent to

$${\mu }_{i\mathrm{U}}\left(0\right)=\left({z}_{\alpha /2}+{z}_{{\gamma }_{1}}\right){\sigma }_{i},\quad {\mu }_{i\mathrm{L}}\left(0\right)=-\left({z}_{\alpha /2}+{z}_{{\gamma }_{2}}\right){\sigma }_{i}.$$

Therefore, we have \(\left[{\mu }_{i\mathrm{L}}\left(d\right), {\mu }_{i\mathrm{U}}\left(d\right)\right]=\left[-\left({z}_{\alpha /2}+{z}_{{\gamma }_{2}}\right){\sigma }_{i},\left({z}_{\alpha /2}+{z}_{{\gamma }_{1}}\right){\sigma }_{i}\right]\) for \({\delta }_{i}^{\mathrm{PT}}=0\).

For \({d}_{0}>{z}_{\alpha /2}{\sigma }_{i}\), we can derive \(\left[{\mu }_{i\mathrm{L}}\left({d}_{0}\right), {\mu }_{i\mathrm{U}}\left({d}_{0}\right)\right]=\left[{d}_{0}-{z}_{{\gamma }_{2}}{\sigma }_{i},{d}_{0}+{z}_{{\gamma }_{1}}{\sigma }_{i}\right]\) as well as for \({d}_{0}<-{z}_{\alpha /2}{\sigma }_{i}\). In conclusion, we have

$$\begin{aligned}&\left[{L}_{i}^{\mathrm{PT}}, {U}_{i}^{\mathrm{PT}}\right]\\ & \quad =\left[{\mu }_{i\mathrm{L}}\left({\delta }_{i}^{\mathrm{PT}}\right), {\mu }_{i\mathrm{U}}\left({\delta }_{i}^{\mathrm{PT}}\right)\right]=\left\{\begin{array}{ll}\left[{\delta }_{i}^{\mathrm{PT}}-{z}_{{\gamma }_{2}}{\sigma }_{i}, {\delta }_{i}^{\mathrm{PT}}+{z}_{{\gamma }_{1}}{\sigma }_{i}\right] & \quad {\rm if}\quad {\delta }_{i}^{\mathrm{PT}}<-{z}_{\alpha /2}{\sigma }_{i},\\ \left[-\left({z}_{\alpha /2}+{z}_{{\gamma }_{2}}\right){\sigma }_{i}, \left({z}_{\alpha /2}+{z}_{{\gamma }_{1}}\right){\sigma }_{i}\right] & \quad {\rm if}\quad {\delta }_{i}^{\mathrm{PT}}=0,\\ \left[{\delta }_{i}^{\mathrm{PT}}-{z}_{{\gamma }_{2}}{\sigma }_{i}, {\delta }_{i}^{\mathrm{PT}}+{z}_{{\gamma }_{1}}{\sigma }_{i}\right] & \quad{\rm if}\quad {\delta }_{i}^{\mathrm{PT}}>{z}_{\alpha /2}{\sigma }_{i}.\end{array}\right.\end{aligned}$$

Thus, the derivation is complete. \(\hfill\square\)

1.5 Appendix E: The proof of Theorem 2

We derive the CP of the pivot CI for each of three cases. We have

$$\begin{aligned}&P\left({\mu }_{i}\in \left[{L}_{i}^{\mathrm{PT}}, {U}_{i}^{\mathrm{PT}}\right]\right)\\&=P\left({\mu }_{i}\in \left[{L}_{i}^{\mathrm{PT}}, {U}_{i}^{\mathrm{PT}}\right], {\delta }_{i}^{\mathrm{PT}}<-{z}_{\alpha /2}{\sigma }_{i}\right)+P\left({\mu }_{i}\in \left[{L}_{i}^{\mathrm{PT}}, {U}_{i}^{\mathrm{PT}}\right], {\delta }_{i}^{\mathrm{PT}}=0\right)\\&\qquad+P\left({\mu }_{i}\in \left[{L}_{i}^{\mathrm{PT}}, {U}_{i}^{\mathrm{PT}}\right], {\delta }_{i}^{\mathrm{PT}}>{z}_{\alpha /2}{\sigma }_{i}\right)\end{aligned}$$
$$\begin{aligned}&=P\left({Y}_{i}-{z}_{{\gamma }_{2}}{\sigma }_{i}\le {\mu }_{i}\le {Y}_{i}+{z}_{{\gamma }_{1}}{\sigma }_{i}, {Y}_{i}<-{z}_{\alpha /2}{\sigma }_{i}\right)\\&\qquad+P\left(-\left({z}_{\alpha /2}+{z}_{{\gamma }_{2}}\right){\sigma }_{i}\le {\mu }_{i}\le \left({z}_{\alpha /2}+{z}_{{\gamma }_{1}}\right){\sigma }_{i}, \left|\frac{{Y}_{i}}{{\sigma }_{i}}\right|\le {z}_{\alpha /2}\right)\\&\qquad+P\left({Y}_{i}-{z}_{{\gamma }_{2}}{\sigma }_{i}\le {\mu }_{i}\le {Y}_{i}+{z}_{{\gamma }_{1}}{\sigma }_{i}, {Y}_{i}>{z}_{\alpha /2}{\sigma }_{i}\right)\end{aligned}$$
$$\begin{aligned}&=P\left({\mu }_{i}-{z}_{{\gamma }_{1}}{\sigma }_{i}\le {Y}_{i}\le {\mu }_{i}+{z}_{{\gamma }_{2}}{\sigma }_{i}, {Y}_{i}<-{z}_{\alpha /2}{\sigma }_{i}\right)\\&\qquad+P\left(-\left({z}_{\alpha /2}+{z}_{{\gamma }_{2}}\right){\sigma }_{i}\le {\mu }_{i}\le \left({z}_{\alpha /2}+{z}_{{\gamma }_{1}}\right){\sigma }_{i},-{z}_{\alpha /2}{\sigma }_{i}\le {Y}_{i}\le {z}_{\alpha /2}{\sigma }_{i} \right)\\&\qquad+P\left({\mu }_{i}-{z}_{{\gamma }_{1}}{\sigma }_{i}\le {Y}_{i}\le {\mu }_{i}+{z}_{{\gamma }_{2}}{\sigma }_{i}, {Y}_{i}>{z}_{\alpha /2}{\sigma }_{i}\right)\end{aligned}$$
$$\begin{aligned}&=P\left(-{z}_{{\gamma }_{1}}\le \frac{{Y}_{i}-{\mu }_{i}}{{\sigma }_{i}}\le {z}_{{\gamma }_{2}},\frac{{Y}_{i}-{\mu }_{i}}{{\sigma }_{i}}<-\frac{{\mu }_{i}}{{\sigma }_{i}}-{z}_{\alpha /2} \right)\\&\qquad+P\left(-\left({z}_{\alpha /2}+{z}_{{\gamma }_{2}}\right)\le \frac{{\mu }_{i}}{{\sigma }_{i}}\le {z}_{\alpha /2}+{z}_{{\gamma }_{1}},-\frac{{\mu }_{i}}{{\sigma }_{i}}-{z}_{\alpha /2}\le \frac{{Y}_{i}-{\mu }_{i}}{{\sigma }_{i}}\le -\frac{{\mu }_{i}}{{\sigma }_{i}}+{z}_{\alpha /2} \right)\\&\qquad+P\left(-{z}_{{\gamma }_{1}}\le \frac{{Y}_{i}-{\mu }_{i}}{{\sigma }_{i}}\le {z}_{{\gamma }_{2}},\frac{{Y}_{i}-{\mu }_{i}}{{\sigma }_{i}}>-\frac{{\mu }_{i}}{{\sigma }_{i}}+{z}_{\alpha /2} \right)\end{aligned}$$
$$\begin{aligned}&=P\left(-{z}_{{\gamma }_{1}}\le {Z}_{i}\le {z}_{{\gamma }_{2}},{Z}_{i}<-{\lambda }_{i}-{z}_{\alpha /2} \right)\\&\qquad+P\left(-\left({z}_{\alpha /2}+{z}_{{\gamma }_{2}}\right)\le {\lambda }_{i}\le {z}_{\alpha /2}+{z}_{{\gamma }_{1}},-{\lambda }_{i}-{z}_{\alpha /2}\le {Z}_{i}\le -{\lambda }_{i}+{z}_{\alpha /2} \right)\\&\qquad+P\left(-{z}_{{\gamma }_{1}}\le {Z}_{i}\le {z}_{{\gamma }_{2}},{Z}_{i}>-{\lambda }_{i}+{z}_{\alpha /2} \right).\end{aligned}$$

Each term in the above equation can be expressed as follows. For the first term, we have

$$\begin{aligned}& P\left(-{z}_{{\gamma }_{1}}\le {Z}_{i}\le {z}_{{\gamma }_{2}},{Z}_{i}<-{\lambda }_{i}-{z}_{\alpha /2} \right)\\ & =\left\{\begin{array}{ll}1-\gamma & \quad {\rm if}\quad {\lambda }_{i}<-{z}_{\alpha /2}-{z}_{{\gamma }_{2}},\\ \Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right)-{\gamma }_{1} &\quad {\rm if}\quad -{z}_{\alpha /2}-{z}_{{\gamma }_{2}}\le {\lambda }_{i}\le -{z}_{\alpha /2}+{z}_{{\gamma }_{1}},\\ 0 & \quad {\rm if}\quad -{z}_{\alpha /2}+{z}_{{\gamma }_{1}}\le {\lambda }_{i}\le {z}_{\alpha /2}+{z}_{{\gamma }_{1}},\\ 0 & \quad {\rm if}\quad {\lambda }_{i} >{z}_{\alpha /2}+{z}_{{\gamma }_{1}},\end{array}\right.\end{aligned}$$

and for the second term, we have

$$\begin{aligned}P\left(-\left({z}_{\alpha /2}+{z}_{{\gamma }_{2}}\right)\le {\lambda }_{i}\le {z}_{\alpha /2}+{z}_{{\gamma }_{1}},-{\lambda }_{i}-{z}_{\alpha /2}\le {Z}_{i}\le -{\lambda }_{i}+{z}_{\alpha /2} \right)=\left\{\begin{array}{ll}0 & \quad {\rm if}\quad {\lambda }_{i}<-{z}_{\alpha /2}-{z}_{{\gamma }_{2}},\\ \Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right)-\Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right) & \quad {\rm if}\quad -{z}_{\alpha /2}-{z}_{{\gamma }_{2}}\le {\lambda }_{i}\le {z}_{\alpha /2}+{z}_{{\gamma }_{1}},\\ 0 & \quad {\rm if}\quad {\lambda }_{i}>{z}_{\alpha /2}+{z}_{{\gamma }_{1}},\end{array}\right.\end{aligned}$$

and for the third term, we have

$$\begin{aligned}& P\left(-{z}_{{\gamma }_{1}}\le {Z}_{i}\le {z}_{{\gamma }_{2}},{Z}_{i}>-{\lambda }_{i}+{z}_{\alpha /2}\right)\\&=\left\{\begin{array}{ll}0 & \quad {\rm if}\quad {\lambda }_{i}<-{z}_{\alpha /2}-{z}_{{\gamma }_{2}},\\ 0 & \quad {\rm if}\quad -{z}_{\alpha /2}-{z}_{{\gamma }_{2}}\le {\lambda }_{i}\le {z}_{\alpha /2}-{z}_{{\gamma }_{2}},\\ 1-{\gamma }_{2}-\Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right) & \quad {\rm if}\quad {z}_{\alpha /2}-{z}_{{\gamma }_{2}}\le {\lambda }_{i}\le {z}_{\alpha /2}+{z}_{{\gamma }_{1}},\\ 1-\gamma & \quad {\rm if}\quad {\lambda }_{i}>{z}_{\alpha /2}+{z}_{{\gamma }_{1}}.\end{array}\right.\end{aligned}$$

Summing up the three terms, we obtain the following CP. For \({z}_{\alpha /2}-{z}_{{\gamma }_{2}}<-{z}_{\alpha /2}+{z}_{{\gamma }_{1}}\)

$$P\left({\mu }_{i}\in \left[{L}_{i}^{\mathrm{PT}}, {U}_{i}^{\mathrm{PT}}\right]\right)=\left\{\begin{array}{ll}1-\gamma & \quad {\rm if}\quad {\lambda }_{i}<-{z}_{\alpha /2}-{z}_{{\gamma }_{2}},\\ \Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right)-{\gamma }_{1} & \quad {\rm if}\quad -{z}_{\alpha /2}-{z}_{{\gamma }_{2}}\le {\lambda }_{i}\le {z}_{\alpha /2}-{z}_{{\gamma }_{2}},\\ 1-\gamma & \quad {\rm if}\quad {z}_{\alpha /2}-{z}_{{\gamma }_{2}}<{\lambda }_{i}<-{z}_{\alpha /2}+{z}_{{\gamma }_{1}},\\ 1-{\gamma }_{2}-\Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right) & \quad {\rm if}\quad -{z}_{\alpha /2}+{z}_{{\gamma }_{1}}\le {\lambda }_{i}\le {z}_{\alpha /2}+{z}_{{\gamma }_{1}},\\ 1-\gamma & \quad {\rm if}\quad {\lambda }_{i}>{z}_{\alpha /2}+{z}_{{\gamma }_{1}},\end{array}\right.$$

for \({z}_{\alpha /2}-{z}_{{\gamma }_{2}}=-{z}_{\alpha /2}+{z}_{{\gamma }_{1}}\),

$$P\left({\mu }_{i}\in \left[{L}_{i}^{\mathrm{PT}}, {U}_{i}^{\mathrm{PT}}\right]\right)=\left\{\begin{array}{ll}1-\gamma & \quad {\rm if}\quad {\lambda }_{i}<-{z}_{\alpha /2}-{z}_{{\gamma }_{2}},\\ \Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right)-{\gamma }_{1} & \quad {\rm if}\quad -{z}_{\alpha /2}-{z}_{{\gamma }_{2}}\le {\lambda }_{i}\le {z}_{\alpha /2}-{z}_{{\gamma }_{2}},\\ 1-{\gamma }_{2}-\Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right) & \quad {\rm if}\quad {z}_{\alpha /2}-{z}_{{\gamma }_{2}}\le {\lambda }_{i}\le {z}_{\alpha /2}+{z}_{{\gamma }_{1}},\\ 1-\gamma & \quad {\rm if}\quad {\lambda }_{i}>{z}_{\alpha /2}+{z}_{{\gamma }_{1}},\end{array}\right.$$

for \({z}_{\alpha /2}-{z}_{{\gamma }_{2}}>-{z}_{\alpha /2}+{z}_{{\gamma }_{1}}\),

$$\begin{aligned}&P\left({\mu }_{i}\in \left[{L}_{i}^{\mathrm{PT}}, {U}_{i}^{\mathrm{PT}}\right]\right)\\&=\left\{\begin{array}{ll}1-\gamma & \quad {\rm if}\quad {\lambda }_{i}<-{z}_{\alpha /2}-{z}_{{\gamma }_{2}},\\ \Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right)-{\gamma }_{1} & \quad {\rm if}\quad -{z}_{\alpha /2}-{z}_{{\gamma }_{2}}\le {\lambda }_{i}\le -{z}_{\alpha /2}+{z}_{{\gamma }_{1}},\\ \Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right)-\Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right) & \quad {\rm if}\quad -{z}_{\alpha /2}+{z}_{{\gamma }_{1}}<{\lambda }_{i}<{z}_{\alpha /2}-{z}_{{\gamma }_{2}},\\ 1-{\gamma }_{2}-\Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right) & \quad {\rm if}\quad {z}_{\alpha /2}-{z}_{{\gamma }_{2}}\le {\lambda }_{i}\le {z}_{\alpha /2}+{z}_{{\gamma }_{1}},\\ 1-\gamma & \quad {\rm if}\quad {\lambda }_{i}>{z}_{\alpha /2}+{z}_{{\gamma }_{1}}.\end{array} \right.\end{aligned}$$

\(\hfill\square\)

1.6 Appendix F: The proof of Theorem 3

We recall that the CP takes three cases (Cases 1–3 in Theorem 2). The first and second cases are expressed as \({z}_{\alpha /2}-{z}_{{\gamma }_{2}}<-{z}_{\alpha /2}+{z}_{{\gamma }_{1}}\) and \({z}_{\alpha /2}-{z}_{{\gamma }_{2}}=-{z}_{\alpha /2}+{z}_{{\gamma }_{1}}\), respectively. In these cases, the CP of Theorem 2 immediately yields

$$\mathop {\inf }\limits_{{ - \infty < \mu _{i} < \infty }} P\left( {\mu _{i} \in \left[ {L_{i}^{{PT}} ,~U_{i}^{{PT}} } \right]} \right) = 1 - \gamma$$

Now, we consider the last case expressed as \(-{z}_{\alpha /2}+{z}_{{\gamma }_{1}}<{z}_{\alpha /2}-{z}_{{\gamma }_{2}}\). Note that \(-{\lambda }_{i}+{z}_{\alpha /2}>{z}_{{\gamma }_{2}}\) is equivalent to \(\Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right)>1-{\gamma }_{2},\) and that \(-{\lambda }_{i}-{z}_{\alpha /2}<-{z}_{{\gamma }_{1}}\) is equivalent to \(-\Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right)>-{\gamma }_{1}\). From these inequalities, for \(-{z}_{\alpha /2}+{z}_{{\gamma }_{1}}<{\lambda }_{i}<{z}_{\alpha /2}-{z}_{{\gamma }_{2}}\), we have

$$\Phi \left(-{\lambda }_{i}+{z}_{\alpha /2}\right)-\Phi \left(-{\lambda }_{i}-{z}_{\alpha /2}\right)>1-{\gamma }_{2}-{\gamma }_{1}=1-\gamma .$$

For \({\lambda }_{i}\le -{z}_{\alpha /2}+{z}_{{\gamma }_{1}}\) and \({\lambda }_{i}\ge {z}_{\alpha /2}-{z}_{{\gamma }_{2}}\), we have

$$\underset{{\lambda }_{i}\le -{z}_{\alpha /2}+{z}_{{\gamma }_{1}},{\lambda }_{i}\ge {z}_{\alpha /2}-{z}_{{\gamma }_{2}} }{\inf}P\left({\mu }_{i}\in \left[{L}_{i}^{\mathrm{PT}}, {U}_{i}^{\mathrm{PT}}\right]\right)=1-\gamma .$$

Therefore

$$\underset{-\infty <{\mu }_{i}<\infty }{\inf}P\left({\mu }_{i}\in \left[{L}_{i}^{\mathrm{PT}}, {U}_{i}^{\mathrm{PT}}\right]\right)=1-\gamma .$$

The proof is complete. \(\hfill\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taketomi, N., Chang, YT., Konno, Y. et al. Confidence interval for normal means in meta-analysis based on a pretest estimator. Jpn J Stat Data Sci 7, 537–568 (2024). https://doi.org/10.1007/s42081-023-00221-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42081-023-00221-2

Keywords