Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Effect of furnace atmosphere on sintering process of chromium-containing steel via powder metallurgy

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

During a powder metallurgy process such as sintering, the primary role played by the atmosphere in furnace is to prevent an excessive oxidation of powder compacts in case of the formation of oxides as residuals on powder surfaces. In particular, the adjustment of furnace atmosphere is the key to eliminate the phenomenon “decarburization” likely to occur in carbon-containing compacts. A continuous belt furnace was used to stabilize the potentials of carbon and oxygen in zones divided by sintering, delubrication, and cooling. Chromium and manganese, which are sensitive to oxygen, were added to improve mechanical properties in a cost-effective way. Powders of steel containing chromium were sintered in an atmosphere composed of CO, O2, and H2. The effects of atmosphere, lubricant, and graphite on oxidation (or reduction) and decarburization (or carburization) were investigated. Superior quality was achieved under the control of delubrication atmosphere. It is indicated that in a protective atmosphere, the chemical reactions occurring at various stages took remarkable effect on the quality of sintered compact. The potentials of oxygen and carbon in a continuous belt furnace were monitored and analyzed using an on-line thermal measuring unit consisting of thermocouple, oxygen probe, and carbon monoxide sensor. The avoidance of oxidation and decarburization promises desired microstructure and carbon content and satisfactory properties through the adjustment of technical parameters, e.g., the composition of gases in delubrication and various sintering zones, the rate of gas inlet, and cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.M. German, Sintering theory and practice, John Wiley & Sons Inc., New York, USA, 1996.

    Google Scholar 

  2. A.G. Linde, Furnace atmosphere, No. 8 sintering steel, Pullach, Linde gas special edition, Germany, 2011.

  3. Classification and designation of carbon and low-alloy steels, in: ASM Handbooks Committee (Eds.), Properties and Selection: Irons, Steels, and High-Performance Alloys, Vol. 1, ASM International, USA, 1990, pp. 140–194.

  4. U. Engström, in: Proceeding of Euro PM2013, European Powder Metallurgy Association, Gothenburg, Sweden, 2013, pp. 301–306.

  5. E. Hryha, C. Gierl, L. Nyborg, H. Danninger, E. Dudrova, Appl. Surf. Sci. 256 (2010) 3946–3961.

    Article  Google Scholar 

  6. E. Hryha, L. Čajková, E. Dudrová, Powder Metall. Prog. 7 (2007) 181–197.

    Google Scholar 

  7. H. Danninger, C. Gierl, S. Kremel, G. Leitner, K. Jaenicke-Roessler, Y. Yu, Powder Metall. Prog. 2 (2002) 125–140.

    Google Scholar 

  8. D. Chasoglou, E. Hryha, L. Nyborg, Mater. Chem. Phys. 138 (2013) 405–415.

    Article  Google Scholar 

  9. E. Hryha, E. Dudrova, L. Nyborg, J. Mater. Process. Technol. 212 (2012) 977–987.

    Article  Google Scholar 

  10. O. Bergman, Powder Metall. 50 (2007) 243–249.

    Article  Google Scholar 

  11. S. Hatami, E. Hryha, L. Nyborg, D. Nilsson, Powder Metall. Prog. 8 (2008) 115–120.

    Google Scholar 

  12. S. Hatami, A. Malakizadi, L. Nyborg, D. Wallin, J. Mater. Process. Technol. 210 (2010) 1180–1189.

    Article  Google Scholar 

  13. E. Hryha, L. Nyborg, A. Malas, S. Wiberg, S. Berg, Powder Metall. 56 (2013) 5–10.

    Article  Google Scholar 

  14. M. Hrubovčáková, E. Dudrová, J. Harvanová, Powder Metall. Prog. 11 (2011) 114–122.

    Google Scholar 

  15. P. Quadbeck, B. Schreyer, A. Strauß, T. Weißgärber, B. Kieback, in: PM2010 World Congress, Vol. 2, European Powder Metallurgy Association, Florence, Italy, 2010, pp. 239–245.

    Google Scholar 

  16. S. Karamchedu, E. Hryha, L. Nyborg, J. Mater. Process. Technol. 223 (2015) 171–185.

    Article  Google Scholar 

  17. M. Zanon, I. Rampin, A. Breda, S. Bueno, Met. Powder Rep. 71 (2016) 252–257.

    Article  Google Scholar 

  18. M.M. Baum, R.M. Becker, A.M. Lappas, J.A. Moss, D. Apelian, D. Saha, V.A. Kapinus, Metall. Mater. Trans. B 35 (2004) 381–392.

    Article  Google Scholar 

  19. E. Hryha, S. Karamchedu, D. Riabov, L. Nyborg, S. Berg, J. Am. Ceram. Soc. 98 (2015) 3561–3568.

    Article  Google Scholar 

  20. B.G. Dionne, P. McCalla, A. Malas, J. Rothstein, G. Moroz, Met. Powder Rep. 70 (2015) 247–252.

    Article  Google Scholar 

  21. S. Karamchedu, E. Hryha, L. Nyborg, Powder Metall. Prog. 11 (2011) 90–96.

    Google Scholar 

  22. O. Bergman, K. Frisk, L. Nyborg, in: Proceeding of Euro PM2009, Vol. 3, European Powder Metallurgy Association, Copenhagen, Denmark, 2009, pp. 239–245.

    Google Scholar 

  23. S. Kremel, H. Danninger, Y. Yu, Powder Metall. Prog. 2 (2002) 211–221.

    Google Scholar 

  24. O. Bergman, in: Proceedings of Euro PM2001, Vol. 1, European Powder Metallurgy Association, Niece, France, 2001, pp. 64–69.

  25. E. Hryha, L. Nyborg, J. Therm. Anal. Calorim. 118 (2014) 825–834.

    Article  Google Scholar 

  26. M. Dlapka, C. Gierl-Mayer, R.O. Calderon, H. Danninger, S. Bengtsson, E. Dudrova, Powder Metall. Prog. 16 (2016) 86–98.

    Article  Google Scholar 

  27. D. Saha, D. Apelian, in: PM2000 World Congress, Vol. 5, Metal Powder Industries Federation, New York, USA, 2000, pp. 183–190.

    Google Scholar 

  28. B. Sundman, B. Jansson, J.O. Andersson, Calphad 9 (1985) 153–190.

    Article  Google Scholar 

  29. T. Holm, Furnace atmosphere No. 1. Gas carburizing and carbonitriding, Linde gas expert edition, Unterschleissheim, Germany, 2007.

Download references

Acknowledgements

This work was performed in Höganäs China sintering hub. The authors would like to thank Höganäs (China) Co., Ltd., for scientific cooperation and the permission to publish this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Zq., Engström, U., Li, K. et al. Effect of furnace atmosphere on sintering process of chromium-containing steel via powder metallurgy. J. Iron Steel Res. Int. 28, 889–900 (2021). https://doi.org/10.1007/s42243-020-00549-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00549-z

Keywords