Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Longitudinal analysis of heart rate and physical activity collected from smartwatches

  • Regular Paper
  • Published:
CCF Transactions on Pervasive Computing and Interaction Aims and scope Submit manuscript

Abstract

Smartwatches can continuously and autonomously monitor vital signs, including heart rates and physical activities involving wrist movement. The monitoring capability of smartwatches has several key health benefits arising from their role in preventive and diagnostic medicine. Current research, however, has not explored many of these opportunities, including longitudinal studies. In our work, we gathered longitudinal data, including heart rate and physical activity, from various brands of smartwatches worn by 1014 users. Our analysis shows three common heart rate patterns during sleep and two common patterns during the day. In addition, we aim to emphasize the practical application of our statistical methods, showcasing the valuable insights and patterns they reveal. We find that heart rate and physical activities are higher in summer and the first month of the new year compared to other months. Moreover, physical activities are reduced on weekends compared with weekdays. Interestingly, the highest peak of physical activity is during the evening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

Data are available upon request and they are not yet publicly released.

Notes

  1. https://play.google.com/store/apps/details?id=com.insight.insight.

  2. This equation was obtained from the following linkFootnote 3 which analyzes time series clustering.

  3. https://www.kaggle.com/code/izzettunc/introduction-to-time-series-clustering/notebook.

References

  • Ahmad, M., Amin, M.B., Hussain, S., Kang, B.H., Cheong, T., Lee, S.: Health fog: a novel framework for health and wellness applications. J. Supercomput. 72(10), 3677–3695 (2016)

    Article  Google Scholar 

  • Akçapỳnar, G., Altun, A., Cosgun, E.: In: 2014 IEEE 14th international conference on advanced learning technologies, pp. 109–111. IEEE (2014)

  • Althoff, T., Sosič, R., Hicks, J.L., King, A.C., Delp, S.L., Leskovec, J.: Large-scale physical activity data reveal worldwide activity inequality. Nature 547(7663), 336–339 (2017)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. ACM Sigmod Rec. 28(2), 49–60 (1999)

    Article  Google Scholar 

  • Azami, Y., Funakoshi, M., Matsumoto, H., Ikota, A., Ito, K., Okimoto, H., Shimizu, N., Tsujimura, F., Fukuda, H., Miyagi, C., et al.: Long working hours and skipping breakfast concomitant with late evening meals are associated with suboptimal glycemic control among young male Japanese patients with type 2 diabetes. J. Diabetes Investig. 10(1), 73–83 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Azza, Y., Grueschow, M., Karlen, W., Seifritz, E., Kleim, B.: How stress affects sleep and mental health: nocturnal heart rate increases during prolonged stress and interacts with childhood trauma exposure to predict anxiety. Sleep 43(6), zsz310 (2020)

    Article  PubMed  Google Scholar 

  • Bakolis, I., Hammoud, R., Smythe, M., Gibbons, J., Davidson, N., Tognin, S., Mechelli, A.: Urban mind: using smartphone technologies to investigate the impact of nature on mental well-being in real time. BioScience 68(2), 134–145 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Bannai, A., Tamakoshi, A.: The association between long working hours and health: a systematic review of epidemiological evidence. Scand. J. Work Environ. Health 5–18 (2014)

  • Bär, K.J., Boettger, M.K., Koschke, M., Schulz, S., Chokka, P., Yeragani, V.K., Voss, A.: Non-linear complexity measures of heart rate variability in acute schizophrenia. Clin. Neurophysiol. 118(9), 2009–2015 (2007)

    Article  PubMed  Google Scholar 

  • Barbosa, H., Barthelemy, M., Ghoshal, G., James, C.R., Lenormand, M., Louail, T., Menezes, R., Ramasco, J.J., Simini, F., Tomasini, M.: Human mobility: models and applications. Phys. Rep. 734, 1–74 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Barrionuevo, W., Burggren, W.: O$_2$ consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O$_2$. Am. J. Physiol. Regul. Integr. Comp. Physiol. 276(2), R505–R513 (1999)

    Article  CAS  Google Scholar 

  • Beh, P.K., Ganesan, Y., Iranmanesh, M., Foroughi, B.: Using smartwatches for fitness and health monitoring: the UTAUT2 combined with threat appraisal as moderators. Behav. Inf. Technol. 40(3), 282–299 (2021)

    Article  Google Scholar 

  • Bernardi, L., Valle, F., Coco, M., Calciati, A., Sleight, P.: Physical activity influences heart rate variability and very-low-frequency components in Holter electrocardiograms. Cardiovasc. Res. 32(2), 234–237 (1996)

    Article  CAS  PubMed  Google Scholar 

  • Bricker, J.B., Watson, N.L., Mull, K.E., Sullivan, B.M., Heffner, J.L.: Efficacy of smartphone applications for smoking cessation: a randomized clinical trial. JAMA Intern. Med. 180(11), 1472–1480 (2020)

    Article  PubMed  Google Scholar 

  • Brosschot, J.F., Van Dijk, E., Thayer, J.F.: Daily worry is related to low heart rate variability during waking and the subsequent nocturnal sleep period. Int. J. Psychophysiol. 63(1), 39–47 (2007)

    Article  PubMed  Google Scholar 

  • Buchheit, M., Richard, R., Doutreleau, S., Lonsdorfer-Wolf, E., Brandenberger, G., Simon, C.: Effect of acute hypoxia on heart rate variability at rest and during exercise. Int. J. Sports Med. 25(04), 264–269 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Butler, P.J., Green, J.A., Boyd, I., Speakman, J.: Measuring metabolic rate in the field: the pros and cons of the doubly labelled water and heart rate methods. Funct. Ecol. 18(2), 168–183 (2004)

    Article  Google Scholar 

  • Cammisuli, D.M., Pietrabissa, G., Castelnuovo, G.: Improving wellbeing of community-dwelling people with mild cognitive impairment: the SENIOR (SystEm of Nudge theory based ICT applications for OldeR citizens) project. Neural Regen. Res. 16(5), 963 (2021)

    PubMed  Google Scholar 

  • Chae, S.H., Kim, Y., Lee, K.S., Park, H.S.: Development and clinical evaluation of a web-based upper limb home rehabilitation system using a smartwatch and machine learning model for chronic stroke survivors: prospective comparative study. JMIR mHealth uHealth 8(7), e17216 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  • Channa, A., Popescu, N., Skibinska, J., Burget, R.: The rise of wearable devices during the COVID-19 pandemic: a systematic review. Sensors 21(17), 5787 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, J.: Roles of smartphone app use in improving social capital and reducing social isolation. Cyberpsychol. Behav. Soc. Netw. 18(6), 350–355 (2015)

    Article  PubMed  Google Scholar 

  • Cincin, A., Sari, I., Oğuz, M., Sert, S., Bozbay, M., Ataş, H., Ozben, B., Tigen, K., Basaran, Y.: Effect of acute sleep deprivation on heart rate recovery in healthy young adults. Sleep Breath. 19(2), 631–636 (2015)

    Article  PubMed  Google Scholar 

  • Cojić, M., Cvejanov-Kezunović, L.: Subclinical hypothyroidism-whether and when to start treatment? Open Access Maced. J. Med. Sci. 5(7), 1042 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Coughlin, S.S., Whitehead, M., Sheats, J.Q., Mastromonico, J., Hardy, D., Smith, S.A.: Smartphone applications for promoting healthy diet and nutrition: a literature review. Jacobs J. Food Nutr. 2(3), 021 (2015)

    PubMed  PubMed Central  Google Scholar 

  • Day, W.H., Edelsbrunner, H.: Efficient algorithms for agglomerative hierarchical clustering methods. J. Classif. 1(1), 7–24 (1984)

    Article  Google Scholar 

  • De Jongh, T., Gurol-Urganci, I., Vodopivec-Jamsek, V., Car, J., Atun, R.: Mobile phone messaging for facilitating self-management of long-term illnesses. Cochrane Database Syst. Rev. (12) (2012)

  • Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 551–556 (2004)

  • Dubey, H., Goldberg, J.C., Abtahi, M., Mahler, L., Mankodiya, K.: EchoWear: smartwatch technology for voice and speech treatments of patients with Parkinson's disease. In: Proceedings of the Conference on Wireless Health, pp. 1–8 (2015)

  • Dunton, G.F., Liao, Y., Intille, S.S., Spruijt-Metz, D., Pentz, M.: Investigating children’s physical activity and sedentary behavior using ecological momentary assessment with mobile phones. Obesity 19(6), 1205–1212 (2011)

    Article  PubMed  Google Scholar 

  • Edwards, S.W., Glover, E.D., Schroeder, K.L.: The effects of smokeless tobacco on heart rate and neuromuscular reactivity in athletes and nonathletes. Physician Sports Med. 15(7), 141–147 (1987)

    Article  Google Scholar 

  • Ehrler, F., Lovis, C.: Supporting elderly homecare with smartwatches: advantages and drawbacks. Stud. Health Technol. Inform. 205, 667–71 (2014)

    PubMed  Google Scholar 

  • El-Zaatari, Z.M., Chami, H.A., Zaatari, G.S.: Health effects associated with waterpipe smoking. Tob. Control 24(Suppl 1), i31–i43 (2015)

    Article  PubMed  Google Scholar 

  • Engert, V., Koester, A.M., Riepenhausen, A., Singer, T.: Boosting recovery rather than buffering reactivity: higher stress-induced oxytocin secretion is associated with increased cortisol reactivity and faster vagal recovery after acute psychosocial stress. Psychoneuroendocrinology 74, 111–120 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, no. 34, pp. 226–231 (1996)

  • Farrell, A.: Effects of temperature on cardiovascular performance. In: Seminar Series-Society for Experimental Biology, vol. 61, pp. 135–158. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  • Fox, K., Borer, J.S., Camm, A.J., Danchin, N., Ferrari, R., Lopez Sendon, J.L., Steg, P.G., Tardif, J.C., Tavazzi, L., Tendera, M., et al.: Resting heart rate in cardiovascular disease. J. Am. Coll. Cardiol. 50(9), 823–830 (2007)

    Article  PubMed  Google Scholar 

  • Gal, R., May, A.M., van Overmeeren, E.J., Simons, M., Monninkhof, E.M.: The effect of physical activity interventions comprising wearables and smartphone applications on physical activity: a systematic review and meta-analysis. Sports Med. Open 4(1), 1–15 (2018)

    Article  Google Scholar 

  • Gan, Y., Wang, T., Javaheri, A., Momeni-Ortner, E., Dehghani, M., Hosseinzadeh, M., Rawassizadeh, R.: 11 years with wearables: quantitative analysis of social media, academia, news agencies, and lead user community from 2009–2020 on wearable technologies. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 5, no. 1, pp. 1–26. ACM, New York, NY, USA (2021)

  • George, C.F., Kryger, M.H.: Sleep and control of heart rate. Clin. Chest Med. 6(4), 595–601 (1985)

    Article  CAS  PubMed  Google Scholar 

  • Giang, W.C., Hoekstra-Atwood, L., Donmez, B.: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 58, pp. 2161–2165. Sage Publications, Sage/Los Angeles (2014)

  • Gouveia, R., Karapanos, E., Hassenzahl, M.: How do we engage with activity trackers? A longitudinal study of Habito. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 1305–1316 (2015)

  • Griefahn, B.: The validity of the temporal parameters of the daily rhythm of melatonin levels as an indicator of morningness. Chronobiol. Int. 19(3), 561–577 (2002)

    Article  PubMed  Google Scholar 

  • Hicks, J.L., Althoff, T., Sosic, R., Kuhar, P., Bostjancic, B., King, A.C., Leskovec, J., Delp, S.L.: Best practices for analyzing large-scale health data from wearables and smartphone apps. NPJ Digit. Med. 2(1), 1–12 (2019)

    Article  Google Scholar 

  • Holko, M., Litwin, T.R., Munoz, F., Theisz, K.I., Salgin, L., Jenks, N.P., Holmes, B.W., Watson-McGee, P., Winford, E., Sharma, Y.: Wearable fitness tracker use in federally qualified health center patients: strategies to improve the health of all of us using digital health devices. NPJ Digit. Med. 5(1), 1–6 (2022)

    Article  Google Scholar 

  • Homayounfar, M., Malekijoo, A., Visuri, A., Dobbins, C., Peltonen, E., Pinsky, E., Teymourian, K., Rawassizadeh, R.: Understanding smartwatch battery utilization in the wild. Sensors 20(13), 3784 (2020)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Horwood, S., Anglim, J.: Problematic smartphone usage and subjective and psychological well-being. Comput. Hum. Behav. 97, 44–50 (2019)

    Article  Google Scholar 

  • Hynynen, E., Uusitalo, A., Konttinen, N., Rusko, H.: Heart rate variability during night sleep and after awakening in overtrained athletes. Med. Sci. Sports Exerc. 38(2), 313 (2006)

    Article  PubMed  Google Scholar 

  • Hynynen, E., Konttinen, N., Rusko, H.: Heart rate variability and stress hormones in novice and experienced parachutists anticipating a jump. Aviat. Space Environ. Med. 80(11), 976–980 (2009)

    Article  PubMed  Google Scholar 

  • Hynynen, E., Konttinen, N., Kinnunen, U., Kyröläinen, H., Rusko, H.: The incidence of stress symptoms and heart rate variability during sleep and orthostatic test. Eur. J. Appl. Physiol. 111(5), 733–741 (2011)

    Article  PubMed  Google Scholar 

  • Iakovakis, D.E., Papadopoulou, F.A., Hadjileontiadis, L.J.: Fuzzy logic-based risk of fall estimation using smartwatch data as a means to form an assistive feedback mechanism in everyday living activities. Healthc. Technol. Lett. 3(4), 263–268 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  • Irwin, M.R., Valladares, E.M., Motivala, S., Thayer, J.F., Ehlers, C.L.: Association between nocturnal vagal tone and sleep depth, sleep quality, and fatigue in alcohol dependence. Psychosom. Med. 68(1), 159–166 (2006)

    Article  PubMed  Google Scholar 

  • James, D.C., Harville, C.: Barriers and motivators to participating in mhealth research among African American men. Am. J. Mens Health 11(6), 1605–1613 (2017)

    Article  PubMed  Google Scholar 

  • Jensen, M.T., Treskes, R.W., Caiani, E.G., Casado-Arroyo, R., Cowie, M.R., Dilaveris, P., Duncker, D., Di Rienzo, M., Frederix, I., De Groot, N., et al.: ESC working group on e-cardiology position paper: use of commercially available wearable technology for heart rate and activity tracking in primary and secondary cardiovascular prevention-in collaboration with the European Heart Rhythm Association, European Association of Preventive Cardiology, Association of Cardiovascular Nursing and Allied Professionals, Patient Forum, and the Digital Health Committee. Eur. Heart J. Digit. Health 2(1), 49–59 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong, H., Kim, H., Kim, R., Lee, U., Jeong, Y.: Smartwatch wearing behavior analysis: a longitudinal study. In: Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, vol. 1, no. 3, pp. 1–31 (2017)

  • Jovanov, E.: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 865–868. IEEE (2015)

  • Kang, S.R., Min, J.Y., Yu, C., Kwon, T.K.: Effect of whole body vibration on lactate level recovery and heart rate recovery in rest after intense exercise. Technol. Health Care 25(S1), 115–123 (2017)

    Article  PubMed  Google Scholar 

  • Kirwan, M., Vandelanotte, C., Fenning, A., Duncan, M.J., et al.: Diabetes self-management smartphone application for adults with type 1 diabetes: randomized controlled trial. J. Med. Internet Res. 15(11), e235 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein, I., Danzi, S.: Thyroid disease and the heart. Circulation 116(15), 1725–1735 (2007)

    Article  PubMed  Google Scholar 

  • Lane, N.D., Mohammod, M., Lin, M., Yang, X., Lu, H., Ali, S., Doryab, A., Berke, E., Choudhury, T., Campbell, A.: Bewell: A smartphone application to monitor, model and promote wellbeing. In: 5th International ICST Conference on Pervasive Computing Technologies for Healthcare, vol. 10 (2011)

  • Lin, C.C., Tsan, K.W., Chen, P.J.: The relationship between sleep apnea syndrome and hypothyroidism. Chest 102(6), 1663–1667 (1992)

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., Fang, X., Chen, Q., Li, Y., Li, T.: Reliability analysis of an integrated device of ECG, PPG and pressure pulse wave for cardiovascular disease. Microelectron. Reliab. 87, 183–187 (2018)

    Article  Google Scholar 

  • Lu, L., Zhang, J., Xie, Y., Gao, F., Xu, S., Wu, X., Ye, Z., et al.: Wearable health devices in health care: narrative systematic review. JMIR mHealth uHealth 8(11), e18907 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  • Lund, H.G., Reider, B.D., Whiting, A.B., Prichard, J.R.: Sleep patterns and predictors of disturbed sleep in a large population of college students. J. Adolesc. Health 46(2), 124–132 (2010)

    Article  PubMed  Google Scholar 

  • Lyman, C.P.: Oxygen consumption, body temperature and heart rate of woodchucks entering hibernation. Am. J. Physiol. Leg. Content 194(1), 83–91 (1958)

    Article  CAS  Google Scholar 

  • MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1. no. 14, pp. 281–297 (1967)

  • Maier, C., Wenz, H., Dickhaus, H.: Robust detection of sleep apnea from Holter ECGs. Methods Inf. Med. 53(04), 303–307 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Majumder, S., Mondal, T., Deen, M.J.: Wearable sensors for remote health monitoring. Sensors 17(1), 130 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • McKay, F.H., Wright, A., Shill, J., Stephens, H., Uccellini, M.: Using health and well-being apps for behavior change: a systematic search and rating of apps. JMIR mHealth uHealth 7(7), e11926 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray, A., Nass, D.: Digital health trends 2021: innovation, evidence, regulation, and adoption. IQVIA Institute (2022)

  • Murtagh, F., Legendre, P.: Ward’s hierarchical clustering method: clustering criterion and agglomerative algorithm (2011). arXiv preprint. arXiv:1111.6285

  • Nakamura, K., Shimai, S., Kikuchi, S., Takahashi, H., Tanaka, M., Nakano, S., Motohashi, Y., Nakadaira, H., Yamamoto, M.: Increases in body mass index and waist circumference as outcomes of working overtime. Occup. Med. 48(3), 169–173 (1998)

    Article  CAS  Google Scholar 

  • Noland, H., Price, J.H., Dake, J., Telljohann, S.K.: Adolescents’ sleep behaviors and perceptions of sleep. J. Sch. Health 79(5), 224–230 (2009)

    Article  PubMed  Google Scholar 

  • Orphanidou, C., Orphanidou, C.: Quality assessment for the photoplethysmogram (PPG). In: Signal Quality Assessment in Physiological Monitoring: State of the Art and Practical Considerations, pp. 41–63 (2018)

  • Padwal, R., Campbell, N.R., Weber, M.A., Lackland, D., Shimbo, D., Zhang, X.H., Schutte, A.E., Rakotz, M., Wozniak, G., Townsend, R., et al.: The accuracy in measurement of blood pressure (AIM-BP) collaborative: background and rationale. J. Clin. Hypertens. 21(12), 1780–1783 (2019)

    Article  Google Scholar 

  • Paparrizos, J., Gravano, L.: k-shape: Efficient and accurate clustering of time series. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1855–1870 (2015)

  • Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9(1), 1–17 (2012)

    Article  Google Scholar 

  • Perez, M.V., Mahaffey, K.W., Hedlin, H., Rumsfeld, J.S., Garcia, A., Ferris, T., Balasubramanian, V., Russo, A.M., Rajmane, A., Cheung, L., et al.: Large-scale assessment of a smartwatch to identify atrial fibrillation. New Engl. J. Med. 381(20), 1909–1917 (2019)

    Article  PubMed  Google Scholar 

  • Perogamvros, L., Park, H.D., Bayer, L., Perrault, A.A., Blanke, O., Schwartz, S.: Increased heartbeat-evoked potential during rem sleep in nightmare disorder. NeuroImage: Clin. 22, 101701 (2019)

    Article  PubMed  Google Scholar 

  • Poisal, J.A., Sisko, A.M., Cuckler, G.A., Smith, S.D., Keehan, S.P., Fiore, J.A., Madison, A.J., Rennie, K.E.: National health expenditure projections, 2021–30: growth to moderate as COVID-19 impacts wane: study examines national health expenditure projections, 2021–30 and the impact of declining federal supplemental spending related to the COVID-19 pandemic. Health Aff. 41(4), 474–486 (2022)

    Article  Google Scholar 

  • Pope, Z.C., Barr-Anderson, D.J., Lewis, B.A., Pereira, M.A., Gao, Z.: Use of wearable technology and social media to improve physical activity and dietary behaviors among college students: a 12-week randomized pilot study. Int. J. Environ. Res. Public Health 16(19), 3579 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Powers, R., Etezadi-Amoli, M., Arnold, E.M., Kianian, S., Mance, I., Gibiansky, M., Trietsch, D., Alvarado, A.S., Kretlow, J.D., Herrington, T.M., et al.: Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinson’s disease. Sci. Transl. Med. 13(579), eabd7865 (2021)

    Article  PubMed  Google Scholar 

  • Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  • Rawassizadeh, R., Price, B.A., Petre, M.: Wearables: has the age of smartwatches finally arrived? Commun. ACM 58(1), 45–47 (2014)

    Article  Google Scholar 

  • Rawassizadeh, R., Tomitsch, M., Nourizadeh, M., Momeni, E., Peery, A., Ulanova, L., Pazzani, M.: Energy-efficient integration of continuous context sensing and prediction into smartwatches. Sensors 15(9), 22616–22645 (2015)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Rawassizadeh, R., Momeni, E., Dobbins, C., Gharibshah, J., Pazzani, M.: Scalable daily human behavioral pattern mining from multivariate temporal data. IEEE Trans. Knowl. Data Eng. 28(11), 3098–3112 (2016)

    Article  Google Scholar 

  • Rawassizadeh, R., Sen, T., Kim, S.J., Meurisch, C., Keshavarz, H., Mühlhäuser, M., Pazzani, M.: Manifestation of virtual assistants and robots into daily life: vision and challenges. CCF Trans. Pervasive Comput. Interact. 1(3), 163–174 (2019)

    Article  Google Scholar 

  • Reeder, B., David, A.: Health at hand: a systematic review of smart watch uses for health and wellness. J. Biomed. Inform. 63, 269–276 (2016)

    Article  PubMed  Google Scholar 

  • Rohani, D.A., Faurholt-Jepsen, M., Kessing, L.V., Bardram, J.E.: Correlations between objective behavioral features collected from mobile and wearable devices and depressive mood symptoms in patients with affective disorders: systematic review. JMIR mHealth uHealth 6(8), e9691 (2018)

    Article  Google Scholar 

  • Romeo, A., Edney, S., Plotnikoff, R., Curtis, R., Ryan, J., Sanders, I., Crozier, A., Maher, C., et al.: Can smartphone apps increase physical activity? Systematic review and meta-analysis. J. Med. Internet Res. 21(3), e12053 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, V., Mankodiya, K., La Torre, F.D., Zhang, A., Ryan, N., Ton, T.G., Gandhi, R., Jain, S.: SPARK: personalized Parkinson disease interventions through synergy between a smartphone and a smartwatch. In: Design, User Experience, and Usability. User Experience Design for Everyday Life Applications and Services: Third International Conference, DUXU 2014, Held as Part of HCI International 2014, Heraklion, Crete, Greece, June 22–27, 2014, Proceedings, Part III, pp. 103–114. Springer (2014)

    Chapter  Google Scholar 

  • Shinar, Z., Akselrod, S., Dagan, Y., Baharav, A.: Autonomic changes during wake-sleep transition: a heart rate variability based approach. Auton. Neurosci. 130(1–2), 17–27 (2006)

    Article  PubMed  Google Scholar 

  • Sigcha, L., Pavón, I., Costa, N., Costa, S., Gago, M., Arezes, P., López, J.M., De Arcas, G.: Automatic resting tremor assessment in Parkinson’s disease using smartwatches and multitask convolutional neural networks. Sensors 21(1), 291 (2021)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Smith, M.G., Croy, I., Ögren, M., Persson Waye, K.: On the influence of freight trains on humans: a laboratory investigation of the impact of nocturnal low frequency vibration and noise on sleep and heart rate. PLoS One 8(2), e55829 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, C., Gold, J., Ngo, T.D., Sumpter, C., Free, C.: Mobile phone-based interventions for improving contraception use. Cochrane Database Syst. Rev. (6) (2015)

  • Stein, P.K., Pu, Y.: Heart rate variability, sleep and sleep disorders. Sleep Med. Rev. 16(1), 47–66 (2012)

    Article  PubMed  Google Scholar 

  • Stein, P.K., Duntley, S.P., Domitrovich, P.P., Nishith, P., Carney, R.M.: A simple method to identify sleep apnea using Holter recordings. J. Cardiovasc. Electrophysiol. 14(5), 467–473 (2003)

    Article  PubMed  Google Scholar 

  • Struyf, A., Hubert, M., Rousseeuw, P.: Clustering in an object-oriented environment. J. Stat. Softw. 1, 1–30 (1997)

    Google Scholar 

  • Szymusiak, R.: Body temperature and sleep. Handb. Clin. Neurol. 156, 341–351 (2018)

    Article  PubMed  Google Scholar 

  • Tanaka, H., Shirakawa, S.: Sleep health, lifestyle and mental health in the Japanese elderly: ensuring sleep to promote a healthy brain and mind. J. Psychosom. Res. 56(5), 465–477 (2004)

    Article  PubMed  Google Scholar 

  • Thorndike, R.L.: Who belongs in the family? Psychometrika 18(4), 267–276 (1953)

    Article  Google Scholar 

  • Thorpe, J., Forchhammer, B.H., Maier, A.M., et al.: Adapting mobile and wearable technology to provide support and monitoring in rehabilitation for dementia: feasibility case series. JMIR Form. Res. 3(4), e12346 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian, J., Azarian, M.H., Pecht, M.: Anomaly detection using self-organizing maps-based k-nearest neighbor algorithm. In: PHM Society European Conference, vol. 2, no. 1 (2014)

  • Tison, G.H., Sanchez, J.M., Ballinger, B., Singh, A., Olgin, J.E., Pletcher, M.J., Vittinghoff, E., Lee, E.S., Fan, S.M., Gladstone, R.A., et al.: Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol. 3(5), 409–416 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Tison, G.H., Avram, R., Kuhar, P., Abreau, S., Marcus, G.M., Pletcher, M.J., Olgin, J.E.: Worldwide effect of COVID-19 on physical activity: a descriptive study. Ann. Intern. Med. 173(9), 767–770 (2020)

    Article  PubMed  Google Scholar 

  • Udovcic, M., Pena, R.H., Patham, B., Tabatabai, L., Kansara, A.: Hypothyroidism and the heart. Methodist DeBakey Cardiovasc. J. 13(2), 55 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Trans. Neural Netw. 11(3), 586–600 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Visuri, A., Sarsenbayeva, Z., van Berkel, N., Goncalves, J., Rawassizadeh, R., Kostakos, V., Ferreira, D.: Quantifying sources and types of smartwatch usage sessions. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 3569–3581 (2017)

  • Wang, T., Gan, Y., Arena, S.D., Chitkushev, L.T., Zhang, G., Rawassizadeh, R.: Advances for indoor fitness tracking, coaching, and motivation: a review of existing technological advances. IEEE Syst. Man Cybern. Mag. 7(1), 4–14 (2021)

    Article  CAS  Google Scholar 

  • Wiklund, U., Karlsson, M., Öström, M., Messner, T.: Influence of energy drinks and alcohol on post-exercise heart rate recovery and heart rate variability. Clin. Physiol. Funct. Imaging 29(1), 74–80 (2009)

    Article  PubMed  Google Scholar 

  • Ye, G., Yin, H., Chen, T., Chen, H., Cui, L., Zhang, X.: FENet: a frequency extraction network for obstructive sleep apnea detection. IEEE J. Biomed. Health Inform. 25(8), 2848–2856 (2021)

    Article  PubMed  Google Scholar 

  • Zhao, Y., Karypis, G.: Criterion functions for document clustering: experiments and analysis (2001)

Download references

Funding

There is no financial support available for this research and the authors contributed to this work voluntarily.

Author information

Authors and Affiliations

Authors

Contributions

Data collection and design of the study: RR, data processing and experimentation and writing the first draft: FK, revising the manuscript: RR, ZA, RReiazi, MH; all authors approved the final submitted draft.

Corresponding author

Correspondence to Reza Rawassizadeh.

Ethics declarations

Conflict of interest

The author declares none.

Ethical standards

The experimental procedures involving human subjects described in this section were approved by the Institutional Review Boards of the Sharif University of Technology. All data are anonymized and no privacy-sensitive information is included.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, F., Amoozgar, Z., Reiazi, R. et al. Longitudinal analysis of heart rate and physical activity collected from smartwatches. CCF Trans. Pervasive Comp. Interact. 6, 18–35 (2024). https://doi.org/10.1007/s42486-024-00147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42486-024-00147-y

Keywords