Abstract
Classifying gene expression data is known to contain keys for solving the fundamental problems in cancer studies. However, this issue is a complex task because of the large p, small n issue on gene expression data analysis. In this paper, we propose the improvements in the large p, small n classification issue for the study of human cancer. First, a new enhancing sample size method with generative adversarial network is proposed to improve classification algorithms. Second, we suggest a classification approach with over-sampling technique using features extracted by deep convolutional neural network. Numerical test results on fifty very-high-dimensional and low-sample-size gene expression data datasets from the Kent Ridge Biomedical and Array Expression repositories illustrate that the proposed models are more accurate than state-of-the-art classifying models. In addition, we also have explored the performance of support vector machines, k nearest neighbors and random forests, which have improved when apply our approaches.
Similar content being viewed by others
References
Aarthi P, Gothai E (2014) Enhancing sample classification for microarray datasets using genetic algorithm. In: International conference on information communication and embedded systems (ICICES2014). IEEE, pp 1–3.
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, et al. Tensorflow: large-scale machine learning on heterogeneous systems. 2015. Software available from tensorflow.org. https://www.tensorflow.org; 2019.
Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Nat Acad Sci. 1999;96(12):6745–50.
Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan SE, Lander ES, Golub TR, Korsmeyer SJ. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. 30(1):41–47. https://doi.org/10.1038/ng765. http://www.nature.com/articles/ng765z.
Bellman R. Dynamic programming treatment of the travelling salesman problem. J ACM. 1962;9(1):61–3.
Bernardo J, Bayarri M, Berger J, Dawid A, Heckerman D, Smith A, West M. Bayesian factor regression models in the “large p, small n” paradigm. Bayesian Stat. 2003;7:733–42.
Bhattacharjee A, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci. 2001;98(24):13790–5.
Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG. ArrayExpress a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 2003;31(1):68–71.
Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
Brown MP, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Nat Acad Sci. 2000;97(1):262–7.
Burges CJ. A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc. 1998;2(2):121–67.
Cao L, Chua KS, Chong W, Lee H, Gu Q. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing. 2003;55(1–2):321–36.
Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2(3):27.
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. Smote: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57.
Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics. 2012;99(6):323–9.
Chiaretti S, Li X, Gentleman R, Vitale A, Vignetti M, Mandelli F, Ritz J, Foa R. Gene expression profile of adult t-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood. 2004;103(7):2771–8.
Chowdary D, Lathrop J, Skelton J, Curtin K, Briggs T, Zhang Y, Yu J, Wang Y, Mazumder A. Prognostic gene expression signatures can be measured in tissues collected in RNAlater preservative. J Mol Diagn. 2006;8(1):31–9.
Costa P, Galdran A, Meyer MI, Niemeijer M, Abràmoff M, Mendonça AM, Campilho A. End-to-end adversarial retinal image synthesis. IEEE Trans Med Imaging. 2017;37(3):781–91.
Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA. Generative adversarial networks: an overview. IEEE Signal Process Mag. 2018;35(1):53–65.
Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods. Cambridge: Cambridge University Press; 2000.
Dosovitskiy A, Springenberg JT, Tatarchenko M, Brox T. Learning to generate chairs, tables and cars with convolutional networks. IEEE Trans Pattern Anal Mach Intell. 2016;39(4):692–705.
Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Asso. 2002;97(457):77–87.
Díaz-Uriarte R, De Andres SA. Gene selection and classification of microarray data using random forest. BMC Bioinform. 2006;7(1):3.
Engreitz JM, Daigle BJ Jr, Marshall JJ, Altman RB. Independent component analysis: mining microarray data for fundamental human gene expression modules. J Biomed Inform. 2010;43(6):932–44.
Fix E, Hodges J. Discriminatory analysis-nonparametric discrimination: Small sample performance. Tech. rep., California Univ. Berkeley; 1952.
Golub TR, Slonim KD, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531–7.
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. Adv Neural Info Process Syst. 2014;2014:2672–80.
Gordon GJ, Jensen RV, Hsiao LL, Gullans SR, Blumenstock JE, Ramaswamy S, Richards WG, Sugarbaker DJ, Bueno R. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 2002;62(17):4963–7.
Gravier E, Pierron G, Vincent-Salomon A, Gruel N, Raynal V, Savignoni A, De Rycke Y, Pierga JY, Lucchesi C, Reyal F. A prognostic DNA signature for t1t2 node-negative breast cancer patients. Genes. 2010;49(12):1125.
Hira ZM, Gillies DF. A review of feature selection and feature extraction methods applied on microarray data. Adv Bioinform. 2015;20:15.
Hsu CW, Chang CC, Lin CJ. A practical guide to support vector classification; 2003.
Hubel DH, Wiesel T. Shape and arrangement of columns in cat’s striate cortex. J Physiol. 1963;165(3):559–68.
Huynh PH, Nguyen VH, Do TN. A coupling support vector machines with the feature learning of deep convolutional neural networks for classifying microarray gene expression data. Modern approaches for intelligent information and database systems. Berlin: Springer; 2018. p. 233–43.
Huynh PH, Nguyen VH, Do TN. A combined enhancing and feature extraction algorithm to improve learning accuracy for gene expression classification; 2019. pp. 255–273.
Huynh PH, Nguyen VH, Do TN. Enhancing gene expression classification of support vector machines with generative adversarial networks. J Inf Commun Convergence Eng. 2019;17:14–20.
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International conference on machine learning; 2015. pp. 448–56.
Jinyan L, Huiqing L. Kent ridge bio-medical data set repository. Technical report; 2002.
Jonnalagadda S, Srinivasan R. Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data. BMC Bioinform. 2008;9(1):267.
Kalantari A, Kamsin A, Shamshirband S, Gani A, Alinejad-Rokny H, Chronopoulos AT. Computational intelligence approaches for classification of medical data: State-of-the-art, future challenges and research directions. Neurocomputing. 2018;276:2–22.
Kim SY. Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. BMC Bioinform. 2009;10(1):147.
Kim Y. Convolutional neural networks for sentence classification. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP); 2014. pp. 1746–51.
Kingma DP, Ba JA. A method for stochastic optimization. In: Proceedings of the 3rd international conference on learning representations (ICLR); 2014.
Krizhevsky et al. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems; 2012. pp. 1097–05.
Breiman L, Friedman J, C.J.S.R.A.O. Classification and regression trees. L. Breiman J. Friedman, C.J.S.R.A.O. Wadsworth International Group. 1984;8:452–6.
Landgrebe J, Wurst W, Welzl G. Permutation-validated principal components analysis of microarray data. Genome Biol. 2002;3(4):research0019-1.
Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, et al. Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017. pp. 4681–90.
Lee SI, Batzoglou S. Application of independent component analysis to microarrays. Genome Biol. 2003;4(11):R76.
Liu Z, Chen D, Bensmail H. Gene expression data classification with kernel principal component analysis. BioMed Res Int. 2005;2005(2):155–9.
Lusa L, et al. Class prediction for high-dimensional class-imbalanced data. BMC Bioinform. 2010;11(1):523.
Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network acoustic models. Proc ICML. 2013;30:3.
Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform. 2016;1:bbw068.
Moeskops P, Veta M, Lafarge MW, Eppenhof KA, Pluim JP. Adversarial training and dilated convolutions for brain mri segmentation. Deep learning in medical image analysis and multimodal learning for clinical decision support. Berlin: Springer; 2017. p. 56–64.
Nikulin V, McLachlan GJ. Penalized principal component analysis of microarray data. In: International meeting on computational intelligence methods for bioinformatics and biostatistics, pp. 82–96. Springer; 2009.
Novianti PW, Jong VL, Roes KC, Eijkemans MJ. Factors affecting the accuracy of a class prediction model in gene expression data. BMC Bioinform. 2015;16(1):199.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.
Perez-Diez A, Morgun A, Shulzhenko N. Microarrays for cancer diagnosis and classification. In: Sag D, editor. Microarray technology and cancer gene profiling. Berlin: Springer; 2007. p. 74–85.
Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo W, Chen C, Zhai Y. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998;20:2.
Pirooznia M, Yang JY, Yang MQ, Deng Y. A comparative study of different machine learning methods on microarray gene expression data. BMC Genom. 2008;9(S1):S13.
Quinlan JR. C4.5: programs for machine learning. San Francisco: Morgan Kaufmann Publishers Inc.; 1993.
Reverter F, Vegas E, Oller JM. Kernel-pca data integration with enhanced interpretability. BMC Syst Biol. 2014;8(S2):S6.
Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–70.
Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS. others: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002;8(1):68.
Tan CS, Ting WS, Mohamad MS, Chan WH, Deris S, Ali Shah Z. A review of feature extraction software for microarray gene expression data. BioMed Res Int. 2014;20:14.
Van Hulse J, Khoshgoftaar TM, Napolitano A. Experimental perspectives on learning from imbalanced data. In: Proceedings of the 24th international conference on Machine learning, pp. 935–942. ACM 2007.
Van’t Veer LJ, Dai H, Van De Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, Van Der Kooy K, Marton MJ, Witteveen AT. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530.
Vapnik. The nature of statistical learning theory. Berlin: Springer; 1995.
Vapnik V. An overview of statistical learning theory. IEEE Trans Neural Netw. 1998;10(5):988–99.
Wong TT. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn. 2015;48(9):2839–46.
Wu X, Kumar V. The top ten algorithms in data mining. Boca Raton: CRC Press; 2009.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the topical collection “Future Data and Security Engineering 2019” guest edited by Tran Khanh Dang.
Rights and permissions
About this article
Cite this article
Huynh, PH., Nguyen, V.H. & Do, TN. Improvements in the Large p, Small n Classification Issue. SN COMPUT. SCI. 1, 207 (2020). https://doi.org/10.1007/s42979-020-00210-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s42979-020-00210-2