Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Graph Embeddings for Abusive Language Detection

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Abusive behaviors are common on online social networks. The increasing frequency of anti-social behaviors forces the hosts of online platforms to find new solutions to address this problem. Automating the moderation process has thus received a lot of interest in the past few years. Various methods have been proposed, most based on the exchanged content, and one relying on the structure and dynamics of the conversation. It has the advantage of being language-independent, however it leverages a hand-crafted set of topological measures which are computationally expensive and not necessarily suitable to all situations. In the present paper, we propose to use recent graph embedding approaches to automatically learn representations of conversational graphs depicting message exchanges. We compare two categories: node vs. whole-graph embeddings. We experiment with a total of 8 approaches and apply them to a dataset of online messages. We also study more precisely which aspects of the graph structure are leveraged by each approach. Our study shows that the representation produced by certain embeddings captures the information conveyed by specific topological measures, but misses out other aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://github.com/eliorc/node2vec

  2. https://play.spaceorigin.fr/.

  3. https://doi.org/10.6084/m9.figshare.7442273.

  4. https://doi.org/10.6084/m9.figshare.11299118.

References

  1. Ahmed A, Shervashidze N, Narayanamurthy S, Josifovski V, Smola AJ. Distributed large-scale natural graph factorization. Int Conf World Wide Web. 2013. https://doi.org/10.1145/2488388.2488393.

    Article  Google Scholar 

  2. Badjatiya P, Gupta S, Gupta M, Varma V. Deep learning for hate speech detection in tweets. Int Conf World Wide Web Companion. 2017. https://doi.org/10.1145/3041021.3054223.

    Article  Google Scholar 

  3. Bai Y, Ding H, Qiao Y, Marinovic A, Gu K, Chen T, Sun Y, Wang W. Unsupervised inductive graph-level representation learning via graph-graph proximity. Int Jt Conf Artif Intell. 2019. https://doi.org/10.24963/ijcai.2019/275.

    Article  Google Scholar 

  4. Balci K, Salah AA. Automatic analysis and identification of verbal aggression and abusive behaviors for online social games. Comput Hum Behav. 2015;53:517–26. https://doi.org/10.1016/j.chb.2014.10.025.

    Article  Google Scholar 

  5. Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems; 2002. pp. 585–591. http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering.pdf.

  6. Cai H, Zheng VW, Chang KCC. A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans Knowl Data Eng. 2018;30(9):1616–37. https://doi.org/10.1109/TKDE.2018.2807452.

    Article  Google Scholar 

  7. Chatzakou D, Kourtellis N, Blackburn J, De Cristofaro E, Stringhini G, Vakali A. Mean birds: detecting aggression and bullying on twitter. ACM Web Sci Conf. 2017. https://doi.org/10.1145/3091478.3091487.

    Article  Google Scholar 

  8. Chen H, Perozzi B, Hu Y, Skiena S. Harp: Hierarchical representation learning for networks. In: 32nd AAAI Conferenceon Artificial Intelligence. 2018. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16273/15922.

  9. Chen Y, Zhou Y, Zhu S, Xu H. Detecting offensive language in social media to protect adolescent online safety. Int Conf Priv Sec Risk Trust Int Conf Social Comput. 2012. https://doi.org/10.1109/SocialCom-PASSAT.2012.55.

    Article  Google Scholar 

  10. Cécillon N, Labatut V, Dufour R, Linarès G. Wac: A corpus of wikipedia conversations for online abuse detection. In: 12th International Conference on Language Resources and Evaluation. 2020.

  11. Cécillon N, Labatut V, Dufour R, Linarès G. Abusive language detection in online conversations by combining content- and graph-based features. Front Big Data. 2019;2:8. https://doi.org/10.3389/fdata.2019.00008.

    Article  Google Scholar 

  12. Dadvar M, Trieschnigg D, Ordelman R, de Jong F. Improving cyberbullying detection with user context. Eur Conf IR Res. 2013. https://doi.org/10.1007/978-3-642-36973-5_62.

    Article  Google Scholar 

  13. Dinakar K, Reichart R, Lieberman H. Modeling the detection of textual cyberbullying. In: 5th International AAAI Conference on Weblogs and Social Media / Workshop on the Social Mobile Web; 2011. pp. 11–17 . https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/3841.

  14. Djuric N, Zhou J, Morris R, Grbovic M, Radosavljevic V, Bhamidipati N. Hate speech detection with comment embeddings. Int Conf World Wide Web. 2015. https://doi.org/10.1145/2740908.2742760.

    Article  Google Scholar 

  15. Donnat C, Zitnik M, Hallac D, Leskovec J. Learning structural node embeddings via diffusion wavelets. ACM SIGKDD Int Conf Knowl Discov Data Min. 2018. https://doi.org/10.1145/3219819.3220025.

    Article  Google Scholar 

  16. Goyal P, Ferrara E. Graph embedding techniques, applications, and performance: a survey. Knowl Based Systems. 2018;151:78–94. https://doi.org/10.1016/j.knosys.2018.03.022.

    Article  Google Scholar 

  17. Grover A, Leskovec J. Node2vec: scalable feature learning for networks. ACM SIGKDD Int Conf Knowl Discov Data Min. 2016. https://doi.org/10.1145/2939672.2939754.

    Article  Google Scholar 

  18. Hou B, Wang Y, Zeng M, Jiang S, Mengshoel O.J, Tong Y, Bai J. Customized graph embedding: tailoring embedding vectors to different applications. 2019. arXiv: 1911.09454.pdf

  19. Kipf T.N, Welling M: Semi-supervides classification with graph convolutional networks. In: ICLR. 2017. arXiv: 1609.02907.pdf

  20. de Lara N, Pineau E. A simple baseline algorithm for graph classification. In: NeurIPS Workshop. 2018. arXiv: 1810.09155.pdf

  21. Le Q, Mikolov T. Distributed representations of sentences and documents. Int Conf Mach Learn. 2014;32:1188–96.

    Google Scholar 

  22. Li J, Wu L, Guo R, Liu C, Liu H. Multi-level network embedding with boosted low-rank matrix approximation. IEEE/ACM Int Conf Adv Soc Netw Anal Min. 2019. https://doi.org/10.1145/3341161.3342864.

    Article  Google Scholar 

  23. Liang X, Li D, Song M, Madden A, Ding Y, Bu Y. Predicting biomedical relationships using the knowledge and graph embedding cascade model. PLoS One. 2019. https://doi.org/10.1371/journal.pone.0218264.

    Article  Google Scholar 

  24. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. In: ICLR Workshop Track Proceedings. 2013.

  25. Mishra P, Del Tredici M, Yannakoudakis H, Shutova E. Author profiling for abuse detection. In: 27th International Conference on Computational Linguistics; 2018. pp. 1088–98 . https://www.aclweb.org/anthology/C18-1093.

  26. Mousavi SF, Safayani M, Mirzaei A, Bahonar H. Hierarchical graph embedding in vector space by graph pyramid. Pattern Recogn. 2017;61(C):245–54. https://doi.org/10.1016/j.patcog.2016.07.043.

    Article  MATH  Google Scholar 

  27. Narayanan A, Chandramohan M, Venkatesan R, Chen L, Liu Y, Jaiswal S. graph2vec: Learning distributed representations of graphs. In: 13th International Workshop on Mining and Learning with Graphs (MLG). 2017.

  28. Nobata C, Tetreault J, Thomas A, Mehdad Y, Chang Y. Abusive language detection in online user content. Int Conf World Wide Web. 2016. https://doi.org/10.1145/2872427.2883062.

    Article  Google Scholar 

  29. Okky Ibrohim M, Budi I. A dataset and preliminaries study for abusive language detection in indonesian social media. Proced Comput Sci. 2018;135:222–9. https://doi.org/10.1016/j.procs.2018.08.169.

    Article  Google Scholar 

  30. Ou M, Cui P, Pei J, Zhang Z, Zhu W. Asymmetric transitivity preserving graph embedding. ACM SIGKDD Int Conf Knowledge Discov Data Min. 2016. https://doi.org/10.1145/2939672.2939751.

    Article  Google Scholar 

  31. Papegnies E, Labatut V, Dufour R, Linarès G. Conversational networks for automatic online moderation. IEEE Trans Comput Soc Syst. 2019;6(1):38–55. https://doi.org/10.1109/TCSS.2018.2887240.

    Article  Google Scholar 

  32. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.

    MathSciNet  MATH  Google Scholar 

  33. Perozzi B, Al-Rfou R, Skiena S. Deepwalk: online learning of social representations. ACM SIGKDD Int Conf Knowl Discov Data Min. 2014. https://doi.org/10.1145/2623330.2623732.

    Article  Google Scholar 

  34. Perozzi B, Kulkarni V, Skiena S. Don’t walk, skip! online learning of multi-scale network embeddings. IEEE/ACM Int Conf Adv Soc Netw Anal Min. 2017. https://doi.org/10.1145/3110025.3110086.

    Article  Google Scholar 

  35. Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science. 2000;290(5500):2323–6. https://doi.org/10.1016/j.chb.2014.10.0255.

    Article  Google Scholar 

  36. Rozemberczki B, Kiss O, Sarkar R. Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs. In: ACM International Conference on Information and Knowledge Management; 2020. pp. 3125–32. https://doi.org/10.1145/3340531.3412757.

  37. Salminen J, Almerekhi H, Milenković M, Jung S, An J, Kwak H, Jansen B.J: Anatomy of online hate: developing a taxonomy and machine learning models for identifying and classifying hate in online news media. In: International AAAI Conference on Web and Social Media (ICWSM 2018). 2018.

  38. Tsitsulin A, Mottin D, Karras P, Bronstein A, Müller E. Netlsd: Hearing the shape of a graph. ACM SIGKDD Int Conf Knowl Discov Data Min. 2018. https://doi.org/10.1145/3219819.3219991.

    Article  Google Scholar 

  39. Verma S, Zhang ZL. Hunt for the unique, stable, sparse and fast feature learning on graphs. Adv Neural Inform Process Syst. 2017;30:88–98.

    Google Scholar 

  40. Wang D, Cui P, Zhu W. Structural deep network embedding. ACM SIGKDD Int Conf Knowl Discov Data Min. 2016. https://doi.org/10.1145/2939672.2939753.

    Article  Google Scholar 

  41. Wang H, Wang J, Wang J, Zhao M, Zhang W, Zhang F, Xie X, Guo M. Graphgan: graph representation learning with generative adversarial nets. AAAI Conf Artif Intell. 2018. https://doi.org/10.1109/TKDE.2019.2961882.

    Article  Google Scholar 

  42. Warner W, Hirschberg J. Detecting hate speech on the world wide web. In: Second Workshop on Language in Social Media; 2012. pp. 19–26.

  43. Waseem Z, Hovy D. Hateful symbols or hateful people? predictive features for hate speech detection on twitter. In: NAACL Student Research Workshop; 2016. pp. 88–93.

  44. Xiang G, Fan B, Wang L, Hong J, Rose C. Detecting offensive tweets via topical feature discovery over a large scale twitter corpus. ACM Int Conf Inform Knowl Manag. 2012. https://doi.org/10.1145/2396761.2398556.

    Article  Google Scholar 

  45. Yan S, Xu D, Zhang B, Zhang H, Yang Q, Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell. 2007;29:40–51.

    Article  Google Scholar 

  46. Yin D, Xue Z, Hong L, Davison B.D, Kontostathis A, Edwards L. Detection of harassment on web 2.0. In: WWW Workshop: Content Analysis in the Web 2.0; 2009. pp. 1–7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noé Cécillon.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Social Media Analytics and its Evaluation” guest edited by Thomas Mandl, Sandip Modha and Prasenjit Majumder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cécillon, N., Labatut, V., Dufour, R. et al. Graph Embeddings for Abusive Language Detection. SN COMPUT. SCI. 2, 37 (2021). https://doi.org/10.1007/s42979-020-00413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-020-00413-7

Keywords