Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

iPAL: A Machine Learning Based Smart Healthcare Framework for Automatic Diagnosis of Attention Deficit/Hyperactivity Disorder

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

ADHD is a prevalent disorder among the younger population. Standard evaluation techniques currently use evaluation forms, interviews with the patient, and more. However, its symptoms are similar to those of many other disorders like depression, conduct disorder, and oppositional defiant disorder, and these current diagnosis techniques are not very effective. Thus, a sophisticated computing model holds the potential to provide a promising diagnosis solution to this problem. This work attempts to explore methods to diagnose ADHD using combinations of multiple established machine learning techniques like neural networks and SVM models on the ADHD200 dataset and explore the field of neuroscience. In this work, multiclass classification is performed on phenotypic data using an SVM model. The better results have been analyzed on the phenotypic data compared to other supervised learning techniques like Logistic regression, KNN, AdaBoost, etc. In addition, neural networks have been implemented on functional connectivity from the MRI data of a sample of 40 subjects provided to achieve high accuracy without prior knowledge of neuroscience. It is combined with the phenotypic classifier using the ensemble technique to get a binary classifier. It is further trained and tested on 400 out of 824 subjects from the ADHD200 data set and achieved an accuracy of 92.5% for binary classification The training and testing accuracy has been achieved upto 99% using ensemble classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

The ADHD data is confidential as the work is in progress for the real-time framework. Therefore, data can not be provided for publication.

References

  1. Berrezueta-Guzman J, Robles-Bykbaev VE, Pau I, Pesántez-Avilés F, Martín-Ruiz ML. Robotic technologies in ADHD care: literature review. IEEE Access. 2021;10:608.

    Article  Google Scholar 

  2. Gu Y, Miao S, Yang J, Li X. ADHD children identification with multiview feature fusion of fNIRS signals. IEEE Sens J. 2022;22(13):13536.

    Article  Google Scholar 

  3. Pei S, Wang C, Cao S, Lv Z. Data augmentation for fMRI-based functional connectivity and its application to cross-site ADHD classification. IEEE Trans Instrum Meas. 2023;72:1. https://doi.org/10.1109/TIM.2022.3232670.

    Article  Google Scholar 

  4. Ankrah EA, Cibrian FL, Silva LM, Tavakoulnia A, Beltran JA, Schuck SE, Lakes KD, Hayes GR. Me, my health, and my watch: how children with ADHD understand smartwatch health data. ACM Trans Comput-Hum Interact. 2022. https://doi.org/10.1145/3577008.

    Article  Google Scholar 

  5. Tavakoulnia A, Guzman K, Cibrian FL, Lakes KD, Hayes G, Schuck SE. Designing a wearable technology application for enhancing executive functioning skills in children with ADHD. In: Adjunct proceedings of the 2019 ACM international joint conference on pervasive and ubiquitous computing and proceedings of the 2019 ACM international symposium on wearable computers. 2019. p. 222–5.

  6. ADHD epidemiology. 2022. https://adhd-institute.com/burden-of-adhd/epidemiology/.

  7. Bansal R, Staib LH, Xu D, Zhu H, Peterson BS. Statistical analyses of brain surfaces using Gaussian random fields on 2-D manifolds. IEEE Trans Med Imaging. 2006;26(1):46.

    Article  Google Scholar 

  8. Shao L, You Y, Du H, Fu D. Classification of ADHD with fMRI data and multi-objective optimization. Comput Methods Programs Biomed. 2020;196:105676.

    Article  Google Scholar 

  9. Saboksayr SS, Foxe JJ, Wismüller A. Attention-deficit/hyperactivity disorder prediction using graph convolutional networks. In: Medical imaging 2020: computer-aided diagnosis, vol. 11314. SPIE; 2020. p. 430–7.

  10. Bellec P, Chu C, Chouinard-Decorte F, Benhajali Y, Margulies DS, Craddock RC. The neuro bureau ADHD-200 preprocessed repository. Neuroimage. 2017;144:275.

    Article  Google Scholar 

  11. M. et al. ADHD200—fcon_1000.projects.nitrc.org. http://fcon_1000.projects.nitrc.org/indi/adhd200/. Accessed 4 Mar 2023.

  12. RaviPrakash H, Watane A, Jambawalikar S, Bagci U. Deep learning and convolutional neural networks for medical imaging and clinical informatics. Berlin: Springer; 2019. p. 347–65.

    Book  Google Scholar 

  13. Riaz A, Alonso E, Slabaugh G. Phenotypic integrated framework for classification of ADHD using fMRI. In: Image analysis and recognition: 13th international conference, ICIAR 2016, in memory of Mohamed Kamel, Póvoa de Varzim, Portugal, July 13–15, 2016, Proceedings, vol. 13. Springer; 2016. p. 217–25.

  14. Qureshi MNI, Min B, Jo HJ, Lee B. Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study. PLoS ONE. 2016;11(8):e0160697.

    Article  Google Scholar 

  15. Chen Y, Gao Y, Jiang A, Tang Y, Wang C. ADHD classification combining biomarker detection with attention auto-encoding neural network. Biomed Signal Process Control. 2023;84:104733.

    Article  Google Scholar 

  16. Thöne AK, Dose C, Junghänel M, Hautmann C, Jendreizik LT, Treier AK, Vetter P, von Wirth E, Banaschewski T, Becker K, et al. Identifying symptoms of ADHD and disruptive behavior disorders most strongly associated with functional impairment in children: a symptom-level approach. J Psychopathol Behav Assess. 2023;45:277–93.

    Article  Google Scholar 

  17. Baboli R, Cao M, Halperin JM, Li X. Distinct thalamic and frontal neuroanatomical substrates in children with familial vs. non-familial attention-deficit/hyperactivity disorder (ADHD). Brain Sci. 2023;13(1):46.

    Article  Google Scholar 

  18. Lorenzi CH, Teixeira Leffa D, Bressan R, Belangero S, Gadelha A, Santoro ML, Salum GA, Rohde LA, Caye A. Replication of a predictive model for youth ADHD in an independent sample from a developing country. J Child Psychol Psychiatry. 2023;64(1):167.

    Article  Google Scholar 

  19. Lee KY, Chen CY, Chen JK, Liu CC, Chang KC, Fung XC, Chen JS, Kao YC, Potenza MN, Pakpour AH, et al. Exploring mediational roles for self-stigma in associations between types of problematic use of internet and psychological distress in youth with ADHD. Res Dev Disabil. 2023;133:104410.

    Article  Google Scholar 

  20. Di Lorenzo R, Balducci J, Cutino A, Latella E, Venturi G, Rovesti S, Filippini T, Ferri P. ADHD follow-up in adulthood among subjects treated for the disorder in a child and adolescent mental health service from 1995 to 2015. Medicina. 2023;59(2):338.

    Article  Google Scholar 

  21. McCabe LE, Johnstone SJ, Jiang H, Sun L, Zhang DW. Links between excessive daytime sleepiness and EEG power and activation in two subtypes of ADHD. Biol Psychol. 2023;177:108504.

    Article  Google Scholar 

  22. Chen M, Li H, Wang J, Dillman JR, Parikh NA, He L. A multichannel deep neural network model analyzing multiscale functional brain connectome data for attention deficit hyperactivity disorder detection. Radiol Artif Intell. 2019;2(1):e190012.

    Article  Google Scholar 

  23. Pereira-Sanchez V, Castellanos FX. Neuroimaging in attention-deficit/hyperactivity disorder. Curr Opin Psychiatry. 2021;34(2):105.

    Article  Google Scholar 

  24. Elujide I, Fashoto SG, Fashoto B, Mbunge E, Folorunso SO, Olamijuwon JO. Application of deep and machine learning techniques for multi-label classification performance on psychotic disorder diseases. Inform Med Unlocked. 2021;23:100545.

    Article  Google Scholar 

  25. Shin J, Maniruzzaman M, Uchida Y, Hasan MAM, Megumi A, Yasumura A. Handwriting-based ADHD detection for children having ASD using machine learning approaches. IEEE Access. 2023;11:84974. https://doi.org/10.1109/ACCESS.2023.3302903.

    Article  Google Scholar 

  26. Shin J, Konnai S, Maniruzzaman M, Hasan MAM, Hirooka K, Megumi A, Yasumura A. Identifying ADHD for children with coexisting ASD from fNIRs signals using deep learning approach. IEEE Access. 2023;11:82794. https://doi.org/10.1109/ACCESS.2023.3299960.

    Article  Google Scholar 

  27. Maniruzzaman M, Hasan MAM, Asai N, Shin J. Optimal channels and features selection based ADHD detection from EEG signal using statistical and machine learning techniques. IEEE Access. 2023;11:33570. https://doi.org/10.1109/ACCESS.2023.3264266.

    Article  Google Scholar 

  28. Khare SK, Gaikwad NB, Bajaj V. VHERS: a novel variational mode decomposition and Hilbert transform-based EEG rhythm separation for automatic ADHD detection. IEEE Trans Instrum Meas. 2022;71:1. https://doi.org/10.1109/TIM.2022.3204076.

    Article  Google Scholar 

  29. Tenev A, Markovska-Simoska S, Kocarev L, Pop-Jordanov J, Müller A, Candrian G. Machine learning approach for classification of ADHD adults. Int J Psychophysiol. 2014;93(1):162.

    Article  Google Scholar 

  30. Moghaddari M, Lighvan MZ, Danishvar S. Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG. Comput Methods Programs Biomed. 2020;197:105738.

    Article  Google Scholar 

  31. Snyder SM, Rugino TA, Hornig M, Stein MA. Integration of an EEG biomarker with a clinician’s ADHD evaluation. Brain Behav. 2015;5(4):e00330.

    Article  Google Scholar 

  32. Yaghoobi Karimu R, Azadi S. Diagnosing the ADHD using a mixture of expert fuzzy models. Int J Fuzzy Syst. 2018;20:1282.

    Article  Google Scholar 

  33. Boroujeni YK, Rastegari AA, Khodadadi H. Diagnosis of attention deficit hyperactivity disorder using non-linear analysis of the EEG signal. IET Syst Biol. 2019;13(5):260.

    Article  Google Scholar 

  34. Itani S, Lecron F, Fortemps P. A multi-level classification framework for multi-site medical data: application to the ADHD-200 collection. Expert Syst Appl. 2018;91:36.

    Article  Google Scholar 

  35. Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, Gramfort A, Thirion B, Varoquaux G. Machine learning for neuroimaging with scikit-learn. Front Neuroinform. 2014;8:14.

    Article  Google Scholar 

  36. Du Y, Fu Z, Calhoun VD. Classification and prediction of brain disorders using functional connectivity: promising but challenging. Front Neurosci. 2018;12:525.

    Article  Google Scholar 

  37. Mowinckel AM, Alnæs D, Pedersen ML, Ziegler S, Fredriksen M, Kaufmann T, Sonuga-Barke E, Endestad T, Westlye LT, Biele G. Increased default-mode variability is related to reduced task-performance and is evident in adults with ADHD. NeuroImage Clin. 2017;16:369.

    Article  Google Scholar 

  38. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825.

    MathSciNet  Google Scholar 

  39. Tomasi D, Volkow ND. Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2012;71(5):443.

    Article  Google Scholar 

  40. Varoquaux G, Sadaghiani S, Pinel P, Kleinschmidt A, Poline JB, Thirion B. A group model for stable multi-subject ICA on fMRI datasets. Neuroimage. 2010;51(1):288.

    Article  Google Scholar 

  41. Yang H, Wu QZ, Guo LT, Li QQ, Long XY, Huang XQ, Chan RC, Gong QY. Abnormal spontaneous brain activity in medication-naive ADHD children: a resting state fMRI study. Neurosci Lett. 2011;502(2):89.

    Article  Google Scholar 

  42. Johnson LE, Conrad JM. A survey of technologies utilized in the treatment and diagnosis of attention deficit hyperactivity disorder. In: Proceedings of 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). 2018. p. 819–24.

  43. Sorger B, Goebel R. Real-time fMRI for brain–computer interfacing. Handb Clin Neurol. 2020;168:289.

    Article  Google Scholar 

  44. Huettel SA. Functional MRI (fMRI). In: Lindon JC, editor. Encyclopedia of spectroscopy and spectrometry. 2nd ed. Oxford: Academic Press; 2010. p. 741–8. https://doi.org/10.1016/B978-0-12-374413-5.00053-1.

    Chapter  Google Scholar 

  45. Johnson EB, Gregory S. Huntington’s disease: brain imaging in Huntington’s disease. Prog Mol Biol Transl Sci. 2019;165:321.

    Article  Google Scholar 

  46. Zalesky A, Fornito A, Bullmore E. On the use of correlation as a measure of network connectivity. Neuroimage. 2012;60(4):2096.

    Article  Google Scholar 

  47. McNorgan C, Judson C, Handzlik D, Holden JG. Linking ADHD and behavioral assessment through identification of shared diagnostic task-based functional connections. Front Physiol. 2020;11:1595.

    Article  Google Scholar 

  48. Zhang H, Zhao Y, Cao W, Cui D, Jiao Q, Lu W, Li H, Qiu J. Aberrant functional connectivity in resting state networks of ADHD patients revealed by independent component analysis. BMC Neurosci. 2020;21:1.

    Article  Google Scholar 

  49. Itani S, Rossignol M, Lecron F, Fortemps P. Towards interpretable machine learning models for diagnosis aid: a case study on attention deficit/hyperactivity disorder. PLoS ONE. 2019;14(4):e0215720.

    Article  Google Scholar 

  50. Sharma Y, Singh BK. Attention deficit hyperactivity disorder detection in children using multivariate empirical EEG decomposition approaches: a comprehensive analytical study. Expert Syst Appl. 2023;213:119219.

    Article  Google Scholar 

  51. Sharma A, Jain A, Sharma S, Gupta A, Jain P, Mohanty SP. iPAL: a machine learning based smart healthcare framework for automatic diagnosis of attention deficit/hyperactivity disorder (ADHD). 2023. arXiv preprint arXiv:2302.00332.

Download references

Acknowledgements

A different version of current paper is archived at [51]. The authors would like to thank the supporting team for validating the current work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateek Jain.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest and there was no human or animal testing or participation involved in this research. All data were obtained from public domain sources.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Jain, A., Sharma, S. et al. iPAL: A Machine Learning Based Smart Healthcare Framework for Automatic Diagnosis of Attention Deficit/Hyperactivity Disorder. SN COMPUT. SCI. 5, 433 (2024). https://doi.org/10.1007/s42979-024-02779-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02779-4

Keywords