Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploring Gender Biases in Information Retrieval Relevance Judgement Datasets

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12657))

Included in the following conference series:

  • 2944 Accesses

Abstract

Recent studies in information retrieval have shown that gender biases have found their way into representational and algorithmic aspects of computational models. In this paper, we focus specifically on gender biases in information retrieval gold standard datasets, often referred to as relevance judgements. While not explored in the past, we submit that it is important to understand and measure the extent to which gender biases may be presented in information retrieval relevance judgements primarily because relevance judgements are not only the primary source for evaluating IR techniques but are also widely used for training end-to-end neural ranking methods. As such, the presence of bias in relevance judgements would immediately find its way into how retrieval methods operate in practice. Based on a fine-tuned BERT model, we show how queries can be labelled for gender at scale based on which we label MS MARCO queries. We then show how different psychological characteristics are exhibited within documents associated with gendered queries within the relevance judgement datasets. Our observations show that stereotypical biases are prevalent in relevance judgement documents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/aminbigdeli/gender-bias-in-relevance-judgements.

  2. 2.

    https://bit.ly/3oBFTJ0.

References

  1. Burgess, D., Borgida, E.: Who women are, who women should be: descriptive and prescriptive gender stereotyping in sex discrimination. Psychol. Public Policy Law 5(3), 665 (1999)

    Article  Google Scholar 

  2. Heilman, M.E.: Description and prescription: how gender stereotypes prevent women’s ascent up the organizational ladder. J. Soc. Issues 57(4), 657–674 (2001)

    Article  Google Scholar 

  3. Ellemers, N.: Gender stereotypes. Annu. Rev. Psychol. 69, 275–298 (2018)

    Article  Google Scholar 

  4. Heilman, M.E.: Gender stereotypes and workplace bias. Res. Organ. Behav. 32, 113–135 (2012)

    Google Scholar 

  5. Swim, J., Borgida, E., Maruyama, G., Myers, D.G.: Joan McKay versus John McKay: do gender stereotypes bias evaluations? Psychol. Bull. 105(3), 409 (1989)

    Article  Google Scholar 

  6. Huddy, L., Terkildsen, N.: Gender stereotypes and the perception of male and female candidates. Am. J. Polit. Sci. 37, 119–147 (1993)

    Google Scholar 

  7. Rekabsaz, N., Schedl, M.: Do Neural Ranking Models Intensify Gender Bias? arXiv preprint arXiv:2005.00372 (2020)

  8. Sun, T., et al.: Mitigating gender bias in natural language processing: literature review. arXiv preprint arXiv:1906.08976 (2019)

  9. Bolukbasi, T., Chang, K.-W., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In: Advances in Neural Information Processing Systems, pp. 4349–4357 (2016))

    Google Scholar 

  10. Zhao, J., Zhou, Y., Li, Z., Wang, W., Chang, K.-W.: Learning gender-neutral word embeddings. arXiv preprint arXiv:1809.01496 (2018)

  11. Rekabsaz, N., Henderson, J., West, R., Hanbury, A.: Measuring Societal Biases in Text Corpora via First-Order Co-occurrence. arXiv preprint arXiv:1812.10424 (2018)

  12. Fabris, A., Purpura, A., Silvello, G., Susto, G.A.: Gender stereotype reinforcement: measuring the gender bias conveyed by ranking algorithms. Inf. Process. Manage. 57, 102377 (2020)

    Article  Google Scholar 

  13. Caliskan, A., Bryson, J.J., Narayanan, A.: Semantics derived automatically from language corpora contain human-like biases. Science 356(6334), 183–186 (2017)

    Article  Google Scholar 

  14. Nguyen, T., et al.: MS MARCO: a human-generated machine reading comprehension dataset (2016)

    Google Scholar 

  15. Devlin, J., Chang, M.-W., Lee, K., Toutanova K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  16. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

  17. Liu, Y., et al.: Roberta: a robustly optimized Bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  18. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, pp. 5753–5763 (2019)

    Google Scholar 

  19. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Ling. 5, 135–146 (2017)

    Google Scholar 

  20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  21. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count: LIWC 2001. Mahway Lawrence Erlbaum Associates 71(2001), 2001 (2001)

    Google Scholar 

  22. Milovchevich, D., Howells, K., Drew, N., Day, A.: Sex and gender role differences in anger: an Australian community study. Personality Individ. Differ. 31(2), 117–127 (2001)

    Article  Google Scholar 

  23. Deffenbacher, J.L., et al.: State-trait anger theory and the utility of the trait anger scale. J. Couns. Psychol. 43(2), 131 (1996)

    Article  Google Scholar 

  24. Gao, W., Ping, S., Liu, X.: Gender differences in depression, anxiety, and stress among college students: a longitudinal study from China. J. Affect. Disord. 263, 292–300 (2020)

    Article  Google Scholar 

  25. Hyde, J.S.: Sex and cognition: gender and cognitive functions. Current Opinion Neurobiol. 38, 53–56 (2016)

    Article  Google Scholar 

  26. Halpern, D.F.: Sex Differences in Cognitive Abilities, 4th edn. Psychology Press, New York (2012)

    Google Scholar 

  27. Collins, D.W., Kimura, D.: A large sex difference on a two-dimensional mental rotation task. Behav. Neurosci. 111(4), 845 (1997)

    Article  Google Scholar 

  28. Mollet, G.A.: Fundamentals of human neuropsychology. J. Undergrad. Neurosci. Educ. 6(2), R3 (2008)

    Google Scholar 

  29. Shaw, S.M.: Gender and leisure: inequality in the distribution of leisure time. J. Leisure Res. 17(4), 266–282 (1985)

    Article  Google Scholar 

  30. Dickstein, L.S.: Attitudes toward death, anxiety, and social desirability. OMEGA-J. Death Dying 8(4), 369–378 (1978)

    Article  Google Scholar 

  31. McDonald, R.T., Hilgendorf, W.A.: Death imagery and death anxiety. J. Clin. Psychol. 42(1), 87–91 (1986)

    Article  Google Scholar 

  32. Francis, L.J.: The personality characteristics of Anglican ordinands: feminine men and masculine women? Personality Individ. Differ. 12(11), 1133–1140 (1991)

    Article  Google Scholar 

  33. Deconchy, J.-P.: Boys and Girls Choices for A Religious Group. Psychology and Religion, pp. 284–300. Penguin, Harmondsworth (1973)

    Google Scholar 

  34. Schein, V.E.: A global look at psychological barriers to women’s progress in management. J. Soc. Issues 57(4), 675–688 (2001)

    Article  Google Scholar 

  35. Heilman, M.E., Block, C.J., Martell, R.F.: Sex stereotypes: do they influence perceptions of managers? J. Soc. Behav. Pers. 10(4), 237 (1995)

    Google Scholar 

  36. Heilman, M.E., Block, C.J., Martell, R.F., Simon, M.C.: Has anything changed? Current characterizations of men, women, and managers. J. Appl. Psychol. 74(6), 935 (1989)

    Article  Google Scholar 

  37. Brenner, O.C., Tomkiewicz, J., Schein., V.E.: The relationship between sex role stereotypes and requisite management characteristics revisited. Acad. Manage. J. 32(3), 662–669 (1989)

    Google Scholar 

  38. Dodge, K.A., Gilroy, F.D., Mickey Fenzel, L.: Requisite management characteristics revisited: two decades later. J. Soc. Behav. Pers. 10(4), 253 (1995)

    Google Scholar 

  39. Denzinger, F., Backes, S., Job, V., Brandstätter, V.: Age and gender differences in implicit motives. J. Res. Pers. 65, 52–61 (2016)

    Article  Google Scholar 

  40. Byrnes, J.P., Miller, D.C., Schafer, W.D.: Gender differences in risk taking: a meta-analysis. Psychol. Bull. 125(3), 367 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Bigdeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bigdeli, A., Arabzadeh, N., Zihayat, M., Bagheri, E. (2021). Exploring Gender Biases in Information Retrieval Relevance Judgement Datasets. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12657. Springer, Cham. https://doi.org/10.1007/978-3-030-72240-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72240-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72239-5

  • Online ISBN: 978-3-030-72240-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics