Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Conservation of Combinatorial Structures in Evolution Scenarios

  • Conference paper
Comparative Genomics (RCG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3388))

Included in the following conference series:

Abstract

This paper investigates the problem of conservation of combinatorial structures in genome rearrangement scenarios. We give a characterization of a class of scenarios that conserve all common intervals, called commuting scenarios, and a characterization of permutations for which commuting scenarios exist. We show that measuring conservation of common intervals can be useful tool in assessing the quality of rearrangement scenarios, by investigating in detail three specific scenarios involving the mouse, rat and human X chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J. Comp. Biol. 8(5), 483–491 (2001)

    Article  Google Scholar 

  2. Bergeron, A.: A very elementary presentation of the hannenhalli-pevzner theory. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 106–117. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Bergeron, A., Chauve, C., Hartman, T., St-Onge, K.: On the properties of sequences of reversals that sort a signed permutation. In: JOBIM 2002, pp. 99–108 (2002)

    Google Scholar 

  4. Bergeron, A., Heber, S., Stoye, J.: Common intervals and sorting by reversals: A marriage of necessity. Bioinformatics 18(suppl. 2), S54–S63 (2002) (ECCB 2002)

    Google Scholar 

  5. Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Bourque, G., Pevzner, P.A.: Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Res. 12(1), 26–36 (2002)

    Google Scholar 

  7. Bourque, G., Pevzner, P.A., Tesler, G.: Reconstructing the genomic architecture of ancestral mammals: Lessons from human, mouse, and rat genomes. Genome Res. 14(4), 507–516 (2004)

    Article  Google Scholar 

  8. Caprara, A.: Formulations and hardness of multiple sorting by reversals. In: RECOMB 1999, pp. 84–94 (1999)

    Google Scholar 

  9. Figeac, M., Varré, J.-S.: Sorting by reversals with common intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 26–37. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Gibbs, R.A., et al.: Genome sequence of the brown norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004)

    Article  Google Scholar 

  11. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Heber, S., Stoye, J.: Finding all common intervals of k permutations. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 207–218. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Kaplan, H., Shamir, R., Tarjan, R.E.: A faster and simpler algorithm for sorting signed permutations by reversals. SIAM J. Computing 29(3), 880–892 (1999)

    Article  MathSciNet  Google Scholar 

  14. Moret, B.M.E., Siepel, A.C., Tang, J., Liu, T.: Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 521–536. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Pevzner, P.A., Tesler, G.: Genome rearrangements in mammalian evolution: Lessons from human and mouse genomes. Genome Res. 13(1), 37–45 (2003)

    Article  Google Scholar 

  16. Tannier, E., Sagot, M.-F.: Sorting by reversals in subquadratic time. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 1–13. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Tesler, G.: GRIMM: genome rearrangements web server. Bioinformatics 18(3), 492–493 (2002)

    Article  MathSciNet  Google Scholar 

  18. Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two permutations. Algorithmica 26(2), 290–309 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bérard, S., Bergeron, A., Chauve, C. (2005). Conservation of Combinatorial Structures in Evolution Scenarios. In: Lagergren, J. (eds) Comparative Genomics. RCG 2004. Lecture Notes in Computer Science(), vol 3388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32290-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32290-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24455-4

  • Online ISBN: 978-3-540-32290-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics