Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Human Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine

  • Conference paper
Ambient Assisted Living and Home Care (IWAAL 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7657))

Included in the following conference series:

Abstract

Activity-Based Computing [1] aims to capture the state of the user and its environment by exploiting heterogeneous sensors in order to provide adaptation to exogenous computing resources. When these sensors are attached to the subject’s body, they permit continuous monitoring of numerous physiological signals. This has appealing use in healthcare applications, e.g. the exploitation of Ambient Intelligence (AmI) in daily activity monitoring for elderly people. In this paper, we present a system for human physical Activity Recognition (AR) using smartphone inertial sensors. As these mobile phones are limited in terms of energy and computing power, we propose a novel hardware-friendly approach for multiclass classification. This method adapts the standard Support Vector Machine (SVM) and exploits fixed-point arithmetic for computational cost reduction. A comparison with the traditional SVM shows a significant improvement in terms of computational costs while maintaining similar accuracy, which can contribute to develop more sustainable systems for AmI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Davies, N., Siewiorek, D.P., Sukthankar, R.: Activity-based computing. IEEE Pervasive Computing 7(2), 20–21 (2008)

    Article  Google Scholar 

  2. Ekholm, J., Fabre, S.: Forecast: Mobile data traffic and revenue, worldwide. In: Gartner Mobile Communications Worldwide, pp. 2010–2015 (July 2011)

    Google Scholar 

  3. Cook, D.J., Das, S.K.: Pervasive computing at scale: Transforming the state of the art. Pervasive and Mobile Computing 8(1), 22–35 (2012)

    Article  Google Scholar 

  4. Allen, F.R., Ambikairajah, E., Lovell, N.H., Celler, B.G.: Classification of a known sequence of motions and postures from accelerometry data using adapted gaussian mixture models. Physiological Measurement 27(10), 935 (2006)

    Article  Google Scholar 

  5. Rodríguez-Molinero, A., Pérez-Martínez, D., Samá, A., Sanz, P., Calopa, M., Gálvez, C., Pérez-López, C., Romagosa, J., Catalá, A.: Detection of gait parameters, bradykinesia and falls in patients with parkinson’s disease by using a unique triaxial accelerometer. World Parkinson Congress, Glasgow (2007)

    Google Scholar 

  6. Mannini, A., Sabatini, A.M.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10(2), 1154–1175 (2010)

    Article  Google Scholar 

  7. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: Proceedings of the Seventeenth Conference on Innovative Applications of Artificial Intelligence, IAAI, pp. 1541–1546. AAAI Press (2005)

    Google Scholar 

  8. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. SIGKDD Explor. Newsl. 12(2), 74–82 (2011)

    Article  Google Scholar 

  9. LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J., Drucker, H., Guyon, I., Mller, U., Sckinger, E., Simard, P., Vapnik, V.: Comparison of learning algorithms for handwritten digit recognition. In: International Conference on Artificial Neural Networks, pp. 53–60 (1995)

    Google Scholar 

  10. Ganapathiraju, A., Hamaker, J., Picone, J.: Applications of support vector machines to speech recognition. IEEE Transactions on Signal Processing 52(8), 2348–2355 (2004)

    Article  Google Scholar 

  11. Wawrzynek, J., Asanovic, K., Morgan, N.: The design of a neuro-microprocessor. VLSI for Neural Networks and Artificial Intelligence 4, 103–107 (1993)

    Google Scholar 

  12. Anguita, D., Gomes, B.A.: Mixing floating- and fixed-point formats for neural network learning on neuroprocessors. Microprocess. Microprogram. 41(10), 757–769 (1996)

    Article  Google Scholar 

  13. Anguita, D., Ghio, A., Pischiutta, S., Ridella, S.: A hardware-friendly support vector machine for embedded automotive applications. In: International Joint Conference on Neural Networks, IJCNN 2007, pp. 1360–1364 (August 2007)

    Google Scholar 

  14. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. Journal of Machine Learning Research 5, 101–141 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to platt’s smo algorithm for svm classifier design. Neural Comput. 13(3), 637–649 (2001)

    Article  MATH  Google Scholar 

  16. Vapnik, V.N.: The nature of statistical learning theory. Springer-Verlag New York, Inc., New York (1995)

    MATH  Google Scholar 

  17. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61–74. MIT Press (1999)

    Google Scholar 

  18. Anguita, D., Sterpi, D.: Nature Inspiration for Support Vector Machines. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4252, pp. 442–449. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Neven, H., Denchev, V.S., Rose, G., Macready, W.G.: Training a binary classifier with the quantum adiabatic algorithm. Arxiv preprint arXiv08110416 (x)  11 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L. (2012). Human Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine. In: Bravo, J., Hervás, R., Rodríguez, M. (eds) Ambient Assisted Living and Home Care. IWAAL 2012. Lecture Notes in Computer Science, vol 7657. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35395-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35395-6_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35394-9

  • Online ISBN: 978-3-642-35395-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics