Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An overview on nonparallel hyperplane support vector machine algorithms

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Support vector machine (SVM) has attracted substantial interest in the community of machine learning. As the extension of SVM, nonparallel hyperplane SVM (NHSVM) classification algorithms have become current researching hot spots in machine learning during the last few years. For binary classification tasks, the idea of NHSVM algorithms is to find a hyperplane for each class, such that each hyperplane is proximal to the data points of one class and far from the data points of the other class. Compared with the classical SVM, NHSVM algorithms have lower computational complexity, work better on XOR problems and can get better generalization performance. This paper reviews three representative NHSVM algorithms, including generalized eigenvalue proximal SVM (GEPSVM), twin SVM (TWSVM) and projection twin SVM (PTSVM), and gives the research progress of them. The aim of this overview is to provide an insightful organization of current developments of NHSVM algorithms, identify their limitations and give suggestions for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chen XB, Yang J, Ye QL, Liang J (2011) Recursive projection twin support vector machine via within-class variance minimization. Pattern Recogn 44(10–11):2643–2655

    Article  MATH  Google Scholar 

  2. Chen WJ, Shao YH, Ning H (2013) Laplacian smooth twin support vector machine for semi-supervised classification. Int J Mach Learn Cyber. doi:10.1007/s13042-013-0183-3

  3. Cong HH, Yang CF, Pu XR (2008) Efficient speaker recognition based on multi-class twin support vector machines and GMMs. 2008 IEEE conference on robotics, automation and mechatronics, pp 348–512

  4. Cristianini N, Taylor JS (2004) An introduction to support vector machines and other kernel-based learning methods (trans: Li G, Wang M, Zeng H). Publishing House of Electronics Industry, Beijing

  5. Ding SF, Hua XP (2013) Recursive least squares projection twin support vector machines for nonlinear classification. Neurocomputing. doi:10.1016/j.neucom.2013.02.046

  6. Ding SF, Yu JZ, Qi BJ, Huang HJ (2012) An overview on twin support vector machines. Artif Intell Rev. doi:10.1007/s10462-012-9336-0

  7. Ding SF, Qi BJ, Tan HY (2011) An overview on theory and algorithm of support vector machines. J Univ Electron Sci Technol China 40(1):2–10

    Google Scholar 

  8. Ding XJ, Zhang GL, Ke YZ, Ma BL, Li ZC (2008) High efficient intrusion detection methodology with twin support vector machines, pp 560–564. doi:10.1109/ISISE.2008.278

  9. Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers. In: Proceedings of the 7th ACMSIFKDD international conference on knowledge discovery and data mining, pp 77–86

  10. Ghorai S, Mukherjee A, Dutta PK (2009) Nonparallel plane proximal classifier. Signal Process 89:510–522

    Article  MATH  Google Scholar 

  11. Guarracino MR, Cifarelli C, Seref O, Pardalos PM (2007) A classification method based on generalized eigenvalue problems. Optim Method Softw 22(1):73–81

    Article  MathSciNet  MATH  Google Scholar 

  12. Hua XP, Ding SF (2012) Matrix pattern based projection twin support vector machines. Int J Digit Content Technol Appl 6(20):172–181

    Article  Google Scholar 

  13. Huang HJ, Ding SF, Shi ZZ (2013) Primal least squares twin support vector regression. J Zhejiang Univ SCI C 14(9):722–732

    Article  Google Scholar 

  14. Jayadeva, Khemchandni R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5):905–910

  15. Jayadeva, Khemchandai R, Chandra S (2007) Fuzzy multi-category proximal support vector classification via generalized eigenvalues. Soft Comput 11(7):685–769

  16. Khan NM, Ksantini R, Ahmad IS, Boufama B (2012) A novel SVM plus NDA model for classification with an application to face recognition. Pattern Recogn 45(1):66–79

    Article  MATH  Google Scholar 

  17. Khemchandani R, Jayadeva, Chandra S (2009) Optimal kernel selection in twin support vector machines. Optim Lett 3(1):77–88

  18. Kumar MA, Gopal M (2009) Least squares twin support vector machines for pattern classification. Expert Syst Appl 36(4):7535–7543

    Article  Google Scholar 

  19. Lin KB, Wang ZJ (2006) The method of fax receiver’s name recognition based on SVM. Comput Eng Appl 42(7):156–158

    Google Scholar 

  20. Liu XL, Ding SF (2010) Appropriateness in applying SVMs to text classification. Comput Eng Sci 32(6):106–108

    Google Scholar 

  21. Mangasarian OL, Wild EW (2006) Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans Pattern Anal Mach Intell 28(1):69–74

    Article  Google Scholar 

  22. Mozafari K, Nasiri JA, Charkari NM, Jalili S (2011) Action recognition by space-time features and least squares twin SVM. 2011 first international conference on informatics and computational intelligence, pp 287–292

  23. Naik GR, Kumar DK, Jayadeva (2010) Twin SVM for gesture classification using the surface electromyogram. IEEE Trans Inf Technol Biomed 14(2):301–308

  24. Peng XJ (2010) TSVR: an efficient twin support vector machine for regression. Neural Netw 23(3):365–372

    Article  Google Scholar 

  25. Peng XJ (2010) Primal twin support vector regression and its sparse approximation. Neurocomputing 73(16–18):2846–2858

    Article  Google Scholar 

  26. Peng XJ (2011) Building sparse twin support vector machine classifiers in primal space. Inf Sci 181:3967–3980

    Article  Google Scholar 

  27. Peng XJ, Xu D (2012) Twin Mahalanobis distance-based support vector machines for pattern recognition. Inf Sci 200(10):22–37

    Article  MathSciNet  MATH  Google Scholar 

  28. Peng XJ, Xu D (2013) Bi-density twin support vector machines for pattern recognition. Neurocomputing 99:134–143

    Article  Google Scholar 

  29. Peng XJ, Xu D (2013) Robust minimum class variance twin support vector machine classifier. Neural Comput Appl 22:999–1011

    Article  Google Scholar 

  30. Peng XJ, Xu D (2013) Norm-mixed twin support vector machine classifier and its geometric algorithm. Neurocomputing 99:486–495

    Article  Google Scholar 

  31. Peng XJ, Wang YF, Xu D (2013) Structural twin parametric-margin support vector machine for binary classification. Knowl-Based Syst 49:63–72

    Article  Google Scholar 

  32. Qi ZQ, Tian YJ, Shi Y (2012) Laplacian twin support vector machine for semi-supervised classification. Neural Netw 35:46–53

    Article  MATH  Google Scholar 

  33. Qi ZQ, Tian YJ, Shi Y (2013) Robust twin support vector machine for pattern classification. Pattern Recogn 46(1):305–316

    Article  MATH  Google Scholar 

  34. Qi ZQ, Tian YJ, Shi Y (2013) Structural twin support vector machine for classification. Knowl-Based Syst 43:74–81

    Article  Google Scholar 

  35. Shao YH, Chen WJ, Huang WB, Yang ZM, Deng NY (2013) The best separating decision tree twin support vector machine for multi-class classification. Procedia Comput Sci 17:1032–1038

    Article  Google Scholar 

  36. Shao YH, Deng NY (2013) A novel margin-based twin support vector machine with unity norm hyperplanes. Neural Comput Applic 22(7–8):1627–1635

    Article  Google Scholar 

  37. Shao YH, Deng NY, Yang ZM (2012) Least squares recursive projection twin support vector machine for classification. Pattern Recogn 45(6):2299–2307

    Article  MATH  Google Scholar 

  38. Shao YH, Wang Z, Chen WJ, Deng NY (2013) A regularization for the projection twin support vector machine. Knowl-Based Syst 37:203–210

    Article  Google Scholar 

  39. Shao YH, Zhang CH, Yang ZM, Jing L, Deng NY (2013) An ε-twin support vector machine for regression. Neural Comput Applic 23(1):175–185

    Article  Google Scholar 

  40. Si X, Jing L (2009) Mass detection in digital mammograms using twin support vector machine-based CAD system. 2009 WASE international conference on information engineering, pp 240–243

  41. Singh M, Chadha J, Ahuja P, Jayadeva, Chandra S (2011) Reduced twin support vector regression. Neurocomputing 74(9):1471–1477

  42. Vapnik VN (2000) The nature of statistical learning theory (trans: Zhang X). Tsinghua University Press, Beijing

  43. Vapnik VN (2004) Statistical learning theory (trans: Xu J, Zhang X). Publishing House of Electronics Industry, Beijing

  44. Wang YN, Zhao X, Tian YJ (2013) Local and global regularized twin SVM. Procedia Comput Sci 18:1710–1719

    Article  MATH  Google Scholar 

  45. Wang Z, Shao YH, Wu TR (2013) A GA-based model selection for smooth twin parametric-margin support vector machine. Pattern Recogn 46:2267–2277

    Article  Google Scholar 

  46. Xie SQ, Shen FM, Qiu XN (2009) Face recognition using support vectormachines. Comput Eng 35(16):186–188

    Google Scholar 

  47. Xu YT, Wang LS (2012) A weighted twin support vector regression. Knowl-Based Syst 33:92–101

    Article  Google Scholar 

  48. Xu YT, Wang LS, Zhong P (2012) A rough margin-based v-twin support vector machine. Neural Comput Applic 21(6):1307–1317

    Article  MathSciNet  Google Scholar 

  49. Yang CF, Ji LP, Liu GS (2009) Study to speech emotion recognition based on TWINsSVM. 2009 Fifth international conference on natural computation, pp 312–316

  50. Yang XB, Chen SC (2006) Proximal support vector machine based on prototypal multiclassification hyperplanes. J Comput Res Dev 43(10):1700–1705

    Article  Google Scholar 

  51. Ye QL, Zhao CX, Gao SB, Zheng H (2012) Weighted twin support vector machines with local information and its application. Neural Netw 35:31–39

    Article  MATH  Google Scholar 

  52. Ye QL, Zhao CX, Ye N, Chen XB (2011) Localized twin SVM via convex minimization. Neurocomputing 74(4):580–587

    Article  Google Scholar 

  53. Ye YF, Cao H, Bai L, Wang Z, Shao YH (2013) Exploring determinants of inflation in China based on L 1-ε-twin support vector regression. Procedia Comput Sci 17:514–522

    Article  Google Scholar 

  54. Zhao YP, Zhao J, Zhao M (2013) Twin least squares support vector regression. Neurocomputing 118:225–236

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Key Basic Research and Development Program (973 Program) under Grant No. 2013CB329502, the National Natural Science Foundation of China under Grant No. 61379101 and the Natural Science Foundation of Jiangsu Province under Grant No. BK2011417.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifei Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, S., Hua, X. & Yu, J. An overview on nonparallel hyperplane support vector machine algorithms. Neural Comput & Applic 25, 975–982 (2014). https://doi.org/10.1007/s00521-013-1524-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-013-1524-6

Keywords