Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A poly(acrylic acid)-modified copper-organic framework for electrochemical determination of vancomycin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A copper(II) benzene-1,3,5-tricarboxylate (BTC) metal-organic framework (MOF) was modified with poly(acrylic acid) (PAA) and then used in an electrochemical sensor for vancomycin. The MOF, synthesized via a single-pot method, has enhanced solubility and dispersibility in water as compared to HKUST-1 but without compromising its crystallinity and porosity. The MOF was placed on a glassy carbon electrode (GCE) where it shows enhanced electrocatalytic properties. This is assumed to be due to the presence of the poly(acrylic acid) that forms a network between various HKUST-1 crystals through dimer formation between the carboxy groups of BTC and PAA. This also led to better dispersion of the MOF and to improved interaction between MOF and vancomycin. The structural, spectral and electrochemical properties of the MOFs and their vancomycin complexes was characterized. The modified GCE is shown to be a viable tool for electrochemical determination (best at a working potential of 784 mV vs. Ag/AgCl) of the antibiotic vancomycin in spiked urine and serum samples. Response is linear in the 1–500 nM vancomycin concentration range, and the detection limit is 1 nM, with a relative standard deviation of ±4.3%.

Schematic representation of a method for determination of vancomycin. Poly(acrylic acid) modified HKUST-1 (P-HKUST-1) forms a complex with vancomycin [Van-P-HKUST-1] which is coated over glassy carbon electrode (GCE). The decrease in peak current is recorded as response to vancomycin via cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gill A, Singh S, Thapliyal N, Karpoormath R (2019) Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant Staphylococcus aureus: a review. Microchim Acta 186:114. https://doi.org/10.1007/s00604-018-3186-7

    Article  CAS  Google Scholar 

  2. Reynolds PE (1989) Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 8(11):943–950

    Article  CAS  Google Scholar 

  3. Lestner JM, Hill LF, Heath PT, Sharland M (2016) Vancomycin toxicity in neonates: a review of the evidence. Curr Opin Infect Dis 29:237–247. https://doi.org/10.1097/QCO.0000000000000263

    Article  CAS  PubMed  Google Scholar 

  4. Vila MMDC, de Oliveira RM, Gonçalves MM (2007) Analytical methods for vancomycin determination in biological fluids and in pharmaceuticals. Quim Nova 30(2):395–399

    Article  CAS  Google Scholar 

  5. Hadi M, Mollaei T (2018) Electroanalytical determination of vancomycin at a graphene-modified electrode: comparison of electrochemical property between graphene, carbon nanotube, and carbon black. Electroanalysis 30:1–6

    Article  Google Scholar 

  6. Korposh S, Chianella I, Guerreiro A, Caygill S, Piletsky S, James SW, Tatam RP (2014) Selective vancomycin detection using optical fibre long period gratings functionalised with molecularly imprinted polymer nanoparticles. Analyst. 139(9):2229–2236. https://doi.org/10.1039/c3an02126b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gupta VK, Atar N, Yola ML, Üstündağ Z, Uzune L (2014) A novel magnetic Fe@au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Research 48:210–217

    Article  CAS  Google Scholar 

  8. Srivastava SK, Gupta VK, Jain S (1996) PVC-based 2, 2, 2-cryptand sensor for zinc ions. Anal Chem 68(7):1272–1275

    Article  CAS  Google Scholar 

  9. Yola ML, Gupta VK, Eren T, Şen AE, Atar N (2014) A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 120:204–211

    Article  CAS  Google Scholar 

  10. Gupta VK, Karimi-Maleh H, Sadegh R (2015) Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. Int J Electrochem Sci 10:303–316

    Google Scholar 

  11. Karimi-Maleh H, Tahernejad-Javazmi F, Atar N, Yola ML, Gupta VK, Ensafi AA (2015) A novel DNA biosensor based on a pencil graphite electrode modified with polypyrrole/functionalized multiwalled carbon nanotubes for determination of 6-mercaptopurine anticancer drug. Ind Eng Chem Res 54(14):3634–3639

    Article  CAS  Google Scholar 

  12. Gupta VK, Kumar S, Singh R, Singh LP, Shoora SK, Sethi B (2014) Cadmium (II) ion sensing through p-tert-butyl calix [6] arene based potentiometric sensor. J Mol Liq 195:65–68

    Article  CAS  Google Scholar 

  13. Anik Ü, Timur S, Dursun Z (2019) Metal organic frameworks in electrochemical and optical sensing platforms: a review. Microchim Acta 186(3):196. https://doi.org/10.1007/s00604-019-3321-0

    Article  CAS  Google Scholar 

  14. Sofi FA, Bhat MA, Majid K (2019) Cu2+-BTC based metal–organic framework: a redox accessible and redox stable MOF for selective and sensitive electrochemical sensing of acetaminophen and dopamine. New J Chem 43:3119–3127. https://doi.org/10.1039/C8NJ06224B

    Article  CAS  Google Scholar 

  15. Jeong NC, Samanta B, Lee CY, Farha OK, Hupp JT (2012) Coordination-chemistry control of proton conductivity in the iconic metal−organic framework material HKUST-1. J Am Chem Soc 134:51–54. https://doi.org/10.1021/ja2110152

    Article  CAS  PubMed  Google Scholar 

  16. Sikwal DR, Kalhapure RS, Rambharose S, Vepuri S, Soliman M, Mocktar C, Govender T (2016) Polyelectrolyte complex of vancomycin as a nanoantibiotic: preparation, in vitro and in silico studies. Mater Sci Eng C 63:489–498. https://doi.org/10.1016/j.msec.2016.03.019

    Article  CAS  Google Scholar 

  17. Warnes SL, Keevil CW (2016) Lack of involvement of Fenton chemistry in death of methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus and destruction of their genomes on wet or dry copper alloy surfaces. Appl Environ Microbiol 82:2132–2136. https://doi.org/10.1128/AEM.03861-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao J, Zhu Y, Huddleston S, Li, Xiao B, Farha OK, Ameer GA (2018) Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano 27;12(2):1023–1032. https://doi.org/10.1021/acsnano.7b01850

    Article  CAS  Google Scholar 

  19. Irving CS, Lapidot (1978) A effects of binding and bactericidal action of vancomycin on bacillus licheniformis cell wall organization as probed by 15N nuclear magnetic resonance spectroscopy. Antimicrobial Agents and Chemotherapy. p. 695–703, 0066-4804/78/0014-0695$02.00/0

    Article  CAS  Google Scholar 

  20. Matzke GR, Zhanel GG, Guay DR (1986) Clinical pharmacokinetics of vancomycin. Clin Pharmacokinet 11(4):257–282. https://doi.org/10.2165/00003088-198611040-00001

    Article  CAS  PubMed  Google Scholar 

  21. Sastry C, Rao T, Rao P (2002) Assay of vancomycin and dobutamine using sodium metaperiodate. Microchim Acta 140:109–118. https://doi.org/10.1007/s00604-002-0900-1

    Article  CAS  Google Scholar 

  22. Bai X, Lu B, Chen X, Zhang B, Tang J (2014) Reversible detection of vancomycin using peptide-functionalized cantilever array sensor. Volume 62:145–150

    CAS  Google Scholar 

  23. Liang W, Liu S, Liu Z, Li D, Wang L, Hao C, He Y (2015) Electron transfer and fluorescence “turn-off” based CdTe quantum dots for vancomycin detection at nanogram level in aqueous serum media. New J Chem 39:4774–4782

    Article  CAS  Google Scholar 

  24. Ng SM, Wu X, Khyasudeen MF, Nowakowski PJ, Tan H-S, Xing B, Yeow EKL (2018) Vancomycin determination by disrupting Electron-transfer in a fluorescence turn-on Squaraine–Anthraquinone triad. ACS Sens:361156–361163. https://doi.org/10.1021/acssensors.8b00188

    Article  CAS  Google Scholar 

  25. Altintas Z (2018) Surface plasmon resonance based sensor for the detection of glycopeptide antibiotics in milk using rationally designed nanoMIPs. Sci Rep 8:11222

    Article  Google Scholar 

Download references

Acknowledgements

The National Research Foundation of South Africa (NRF-SA) for funding (Grant No.103728 and 112079).

The authors would like to thank the College of Health Sciences, University of KwaZulu-Natal (UKZN), Nanotechnology platform-UKZN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajshekhar Karpoormath.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, A.A.S., Singh, S., Agrawal, N. et al. A poly(acrylic acid)-modified copper-organic framework for electrochemical determination of vancomycin. Microchim Acta 187, 79 (2020). https://doi.org/10.1007/s00604-019-4015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4015-3

Keywords