Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A low power DLL based clock and data recovery circuit with wide range anti-harmonic lock

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a wide frequency range CDR circuit for second generation AiPi+ intra-panel interface. The speed of the proposed clock and data recovery is increased to 1.25 Gbps compared with conventional AiPi+. The DLL-based CDR architecture is adopted to generate multi-phase clocks. We propose a simple scheme for a frequency detector (FD) to overcome the limited frequency range and false lock problem of a conventional delay-locked loop (DLL) to reduce the complexity. In addition, a duty cycle corrector that limits the maximum pulse width is used to avoid the problem of missing clock edges due to the mismatches between rising and falling time of delay cells in the VCDL. Also, the proposed simple DLL architecture comprised of frequency and phase detectors has better process-portability. The proposed CDR is implemented in 0.18 μm technology and the active die area is 660 × 250 μm. The implemented DLL covers a frequency range from 62 to 128 MHz, which is limited only by the characteristics of the delay cell. The peak-to-peak jitter is less than 13 ps when the input frequency is 128 MHz, and the power consumption of the CDR except the input buffer, equalizer, and de-serializer is 5.94 mW from the supply voltage of 1.8 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Nam, H., Oh, K. Y., Kim, S. K., Kim, N. D., & Kim, S. S. (2009). A cost-effective 60 Hz FHD LCD using 800 Mbps AiPi technology. KIDS Journal of Information Display, 10(1), 37–44.

    Article  Google Scholar 

  2. Yamguchi, K., Hori, Y., Nakajima, K., Suzuki, K., Mizuno, M., Hayama, H. (2009). A 2.0 Gb/s clock-embedded interface for full-HD 10b 120 Hz LCD drivers with 1/5-rate noise-tolerant phase and frequency recovery. IEEE ISSCC Digest of Technical Papers, pp. 192–193.

  3. Lee, T. H., Donnelly, K. S., Ho, J. T. C., Zerbe, J., Johnson, M. G., & Ishikawa, T. (1994). A 2.5 V CMOS delay-locked loop for an 18 Mbit, 500 MB/s DRAM. IEEE Journal of Solid-State Circuits, 29, 1491–1496.

    Article  Google Scholar 

  4. Sidiropoulos, S., & Horowiz, M. A. (1997). A semi-digital dual delay-locked loop. IEEE Journal of Solid-State Circuits, 32, 1683–1692.

    Article  Google Scholar 

  5. Coban, A. L., Koroglu, M. H., & Ahmed, K. A. (2005). A 2.5–3.125-Gb/s quad transceiver with second-order analog DLL-based CDRs. IEEE Journal of Solid-State Circuits, 40(9), 1940–1947.

    Article  Google Scholar 

  6. Jung, Y. J., Lee, S. W., Shim, D., Kim, W., & Cho, S. I. (2001). A dual-loop delay-locked loop using multiple voltage-controlled delay lines. IEEE Journal of Solid-State Circuits, 36(5), 784–791.

    Article  Google Scholar 

  7. Moon, Y., Choi, J., Lee, K., Jeong, D. K., & Kim, M. K. (2000). An all-analog multiphase delay-locked loop using a replica delay line for wide-range operation and low-jitter performance. IEEE Journal of Solid-State Circuits, 35(3), 377–384.

    Article  Google Scholar 

  8. Chung, C. C., & Lee, C. Y. (2004). A new DLL-based approach for all-digital multiphase clock generation. IEEE Journal of Solid-State Circuits, 39(3), 469–475.

    Article  Google Scholar 

  9. Chang, H. H., Lin, J. W., Yang, C. Y., & Liu, S. I. (2002). A wide-range delay locked loop with a fixed latency of one clock cycle. IEEE Journal of Solid-State Circuits, 37(8), 1021–1027.

    Article  Google Scholar 

  10. Minami, K., et al. (2000). A 1 GHz portable digital delay-locked loop with infinite phase capture ranges. IEEE ISSCC Digest of Technical Papers, pp. 350–351.

  11. Foley, D. J., & Flynn, M. P. (2001). CMOS DLL-based clock synthesizer and temperature-compensated tunable oscillator. IEEE Journal of Solid-State Circuits, 36(3), 417–423.

    Article  Google Scholar 

  12. Gierkink, S. L. J. (2008). Low-spur, low-phase-noise clock multiplier based on a combination of PLL and recirculating DLL with dual-pulse ring oscillator and self-correcting charge pump. IEEE Journal of Solid-State Circuits, 43(12), 2967–2976.

    Article  Google Scholar 

  13. Huh, H., Koo, Y., Lee, K.-Y., Ok, Y., Lee, S., Kwon, D., et al. (2005). Comparison frequency doubling and charge pump matching techniques for dual-band ΔΣ fractional-N frequency synthesizer. IEEE Journal of Solid-State Circuits, 40(11), 2228–2236.

    Article  Google Scholar 

  14. Song, E., Lee, S.-W., Lee, J.-W., Park, J., & Chae, S.-I. (2004). A reset-free anti-harmonic delay-locked loop using a cycle period detector. IEEE Journal of Solid-State Circuits, 39(11), 2055–2061.

    Article  Google Scholar 

  15. Rhee, R.W., Ainspan, H., Rylov, S., Rylyakov, A., Beakes, M., Friedman, D., Gowda, S., Soyuer, M. (2003). A 10-Gb/s CMOS clock and data recovery circuit using a secondary delay-locked loop. Custom Integrated Circuits Conference, 2003. Proceedings of the IEEE 2003, pp. 81–84.

  16. Cheng, K.-H., & Lo, Y.-L. (2007). A fast-lock wide-range delay-locked loop using frequency-range selector for multiphase clock generator. IEEE Transactions on Circuits and Systems. Part II, 54(7), 561–565.

    Article  Google Scholar 

  17. Young, A., Greason, J.K., & Wong, K.L. (1992). A PLL clock generator with 5 to 110 MHz of lock range for microprocessors. IEEE Journal of Solid-State Circuits, SC-27: 1599–1607.

    Google Scholar 

  18. Chen, C.-C., & Liu, S.-I. (2008). An infinite phase shift delay-locked loop with voltage-controlled sawtooth delay line. IEEE Journal of Solid-State Circuits, 43(11), 2413–2421.

    Article  Google Scholar 

  19. Chang, R.C.-H., Chen, H.-M., & Huang, P.-J. (2008) A multiphase-output delay-locked loop with a novel start-controlled phase/frequency detector. IEEE Transactions on Circuits and Systems–I, 55(9): 2483–2490.

    Google Scholar 

  20. Lu, C.-T., Hsieh, H.-H., & Lu, L.-H. (2009). A 0.6 V low-power wide-range delay-locked loop in 0.18 μ. IEEE Microwave and Wireless Components Letters, 19(10), 662–664.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2011-0004675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Yoon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, HG., Kim, S. & Lee, KY. A low power DLL based clock and data recovery circuit with wide range anti-harmonic lock. Analog Integr Circ Sig Process 74, 355–364 (2013). https://doi.org/10.1007/s10470-012-9976-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-012-9976-7

Keywords