Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fabrication of Nanostructure Electrochemical Sensor Based on the Carbon Paste Electrode (CPE) Modified With Ionic Liquid and Fe3O4/ZIF-67 for Electrocatalytic Sulfamethoxazole Detection

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The detection of sulfamethoxazole, an antibacterial sulfonamide drug, is a very effective with antibiotic properties, and commonly used in the treatment of a variety of infections. Due to the importance in diseases treatment of humans and also of animals, the development of techniques for its quantification in body fluids is highly desirable. A voltammetric sensor is described for the determination of the antibiotic sulfamethoxazole. It is based on the use of a carbon paste electrode modified with a Fe3O4/ZIF-67 nanocomposite and ionic liquid (IL) 1-Butyl-3-methylimidazolium hexafluorophosphate (Fe3O4/ZIF-67/ILCPE). The morphology and structure of the nanocomposite were characterized by Fourier-transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD), transmission electron microscopy(TEM) and field emission scanning electron microscopy (FESEM). Under the optimal conditions, the response of the electrode, typically measured between 0.74 and 1.1 V (vs. Ag/AgCl), increases linearly in the 0.01−520.0 µM sulfamethoxazole concentration range, and the lower detection limit is 5.0 nM. Moreover, this electrode could substantially be applied for the analysis of sulfamethoxazole in the real samples (e.g., urine, tap water and river water).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cai M, Zhu L, Ding Y, Wang J, Li J, Du X (2012) Determination of sulfamethoxazole in foods based on CeO2/chitosan nanocomposite-modified electrodes. Mater Sci Eng C 32:2623–2627

    Article  CAS  Google Scholar 

  2. Ozkorucuklu SP, Sahin Y, Alsancak G (2008) Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole. Sensors 8:8463–8478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andrade LS, Rocha-Filho RC, Cass QB, Fatibello‐Filho O (2009) Simultaneous differential pulse voltammetric determination of sulfamethoxazole and trimethoprim on a boron‐doped diamond electrode. Electroanalysis 21:1475–1480

    Article  CAS  Google Scholar 

  4. Andrade LS, de Moraes MC, Rocha-Filho RC, Fatibello-Filho O, Cass QB (2009) A multidimensional high performance liquid chromatography method coupled with amperometric detection using a boron-doped diamond electrode for the simultaneous determination of sulfamethoxazole and trimethoprim in bovine milk. Anal Chim Acta 654:127–132

    Article  CAS  PubMed  Google Scholar 

  5. Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT (2003) Anticancer and antiviral sulfonamides. Curr Med Chem 10:925–953

    Article  CAS  PubMed  Google Scholar 

  6. Arvand M, Ansari R, Heydari L (2011) Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamethoxazole using carbon nanotube paste electrode. Mater Sci Eng C 31:1819–1825

    Article  CAS  Google Scholar 

  7. Balasubramanian P, Settu R, Chen SM, Chen TW (2018) Voltammetric sensing of sulfamethoxazole using a glassy carbon electrode modified with a graphitic carbon nitride and zinc oxide nanocomposite. Microchim Acta 185:1–9

    Article  CAS  Google Scholar 

  8. Shabani-Nooshabadi M, Roostaee M (2016) Modification of carbon paste electrode with NiO/graphene oxide nanocomposite and ionic liquids for fabrication of high sensitive voltammetric sensor on sulfamethoxazole analysis. J Mol Liq 220:329–333

    Article  CAS  Google Scholar 

  9. Zhang S, Song HL, Yang XL, Li H, Wang YW (2018) A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes. Bioresour Technol 256:224–231

    Article  CAS  PubMed  Google Scholar 

  10. Amini H, Ahmadiani A (2007) Rapid and simultaneous determination of sulfamethoxazole and trimethoprim in human plasma by high-performance liquid chromatography. J Pharmaceu Biomed Anal 43:1146–1150

    Article  CAS  Google Scholar 

  11. Pereira AV, Cass QB (2005) High-performance liquid chromatography method for the simultaneous determination of sulfamethoxazole and trimethoprim in bovine milk using an on-line clean-up column. J Chromatogr B 826:139–146

    Article  CAS  Google Scholar 

  12. da Silva IS, Vidal DTR, do Lago CL, Angnes L (2013) Fast simultaneous determination of trimethoprim and sulfamethoxazole by capillary zone electrophoresis with capacitively coupled contactless conductivity detection. J Sep Sci 36:1405–1409

    Article  CAS  PubMed  Google Scholar 

  13. Shamsa F, Amani L (2006) Determination of sulfamethoxazole and trimethoprim in pharmaceuticals by visible and UV spectrophotometry. Iran J Pharma Res 5:31–36

    CAS  Google Scholar 

  14. Sgobbi LF, Razzino CA, Machado SA (2016) A disposable electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics in urine based on multiwalled nanotubes decorated with Prussian blue nanocubes modified screen-printed electrode. Electrochim Acta 191:1010–1017

    Article  CAS  Google Scholar 

  15. Tajik S, Beitollahi H, Asl MS, Jang HW, Shokouhimehr M (2021) BN-Fe3O4-Pd nanocomposite modified carbon paste electrode: Efficient voltammetric sensor for sulfamethoxazole. Ceram Int 47:13903–13911

    Article  CAS  Google Scholar 

  16. Arvand M, Gholizadeh TM, Zanjanchi MA (2012) MWCNTs/Cu (OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mater Sci Eng C 32:1682–1689

    Article  CAS  Google Scholar 

  17. Karimi-Maleh H, Orooji Y, Karimi F, Alizadeh M, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK, Rajendran S, Ayati A, Fu L, Sanati AL, Tanhaei B, Sen F, Shabani-Nooshabadi M, Naderi Asrami P, Al-Othman A (2021) A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron 184:113252

    Article  CAS  PubMed  Google Scholar 

  18. Govindasamy M, Manavalan S, Chen SM, Rajaji U, Chen TW, Al-Hemaid FM, Elshikh MS (2018) Determination of neurotransmitter in biological and drug samples using gold nanorods decorated f-MWCNTs modified electrode. J Electrochem Soc 165:B370

    Article  CAS  Google Scholar 

  19. Arumugam B, Muthukutty B, Chen SM, Ramaraj SK, Kumar JV, Nagarajan ER (2020) Ultrasonication-aided synthesis of nanoplates-like iron molybdate: fabricated over glassy carbon electrode as an modified electrode for the selective determination of first generation antihistamine drug promethazine hydrochloride. Ultrason Sonochem 66:104977

    Article  CAS  PubMed  Google Scholar 

  20. Srikanta S, Parmeswara Naik P, Krishanamurthy G (2019) Electrochemical behaviour of 5-methoxy-5,6-bis(3-nitropheyl-4,5-dihydro-1,2,4-triazine-3(2H))-thione in presence of salicylaldehyde on zinc cathode with surface morphology and biological activity. Asian J Green Chem 4:149–158

    Google Scholar 

  21. Tajik S, Orooji Y, Ghazanfari Z, Karimi F, Beitollahi H, Varma RS, Jang HW, Shokouhimehr M (2021) Nanomaterials modified electrodes for electrochemical detection of Sudan I in food. J Food Meas Charact. https://doi.org/10.1007/s11694-021-00955-1

    Article  Google Scholar 

  22. Yola ML, Atar N (2019) Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer. Biosens Bioelectron 126:418–424

    Article  CAS  PubMed  Google Scholar 

  23. Atta NF, El-Ads EH, Galal A, Galal AE (2019) Electrochemical sensing platform based on nano‐perovskite/glycine/carbon composite for amlodipine and ascorbic acid drugs. Electroanalysis 31:448–460

    Article  CAS  Google Scholar 

  24. Yari A, Shams A (2018) Silver-filled MWCNT nanocomposite as a sensing element for voltammetric determination of sulfamethoxazole. Anal Chim Acta 1039:51–58

    Article  CAS  PubMed  Google Scholar 

  25. Karimi-Maleh H, Alizadeh M, Orooji Y, Karimi F, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK, Rajendran S, Rostamnia S, Fu L, Saberi-Movahed F, Malekmohammadi S (2021) Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: a docking/experimental investigation. Ind Eng Chem Res 60:816–823

    Article  CAS  Google Scholar 

  26. Payehghadr M, Taherkhani Y, Maleki A, Nourifard F (2020) Selective and sensitive voltammetric sensor for methocarbamol determination by molecularly imprinted polymer modified carbon paste electrode. Eurasian Chem Commun 2:982–990

    CAS  Google Scholar 

  27. Khalilzadeh MA, Tajik S, Beitollahi H, Venditti RA (2020) Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@ CNC/Cu): investigation of catalytic activity for the development of a venlafaxine electrochemical sensor. Indust Eng Chem Res 59:4219–4228

    Article  CAS  Google Scholar 

  28. Rshad S, Mofidi Rasi R (2019) Electrocatalytic oxidation of sulfite ion at the surface carbon ceramic modified electrode with prussian blue. Eurasian Chem Commun 1:43–52

    Google Scholar 

  29. Tajik S, Beitollahi H, Won Jang H, Shokouhimehr M (2021) A screen printed electrode modified with Fe3O4@polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine. Talanta 232:122379

    Article  CAS  PubMed  Google Scholar 

  30. Abrishamkar M, Ehsani Tilami S, Hosseini Kaldozakh S (2020) Electrocatalytic oxidation of cefixime at the surface of modified carbon paste electrode with synthesized nano zeolite. Adv J Chem A 3:767–776

    CAS  Google Scholar 

  31. Tajik S, Beitollahi H, Garkani Nejad F, Sheikhshoaie I, Sugih Nugraha A, Won Jang H, Yamauchi Y, Shokouhimehr M (2021) Performance of metal–organic frameworks in the electrochemical sensing of environmental pollutants. J Mater Chem A 9:8195–8220

    Article  CAS  Google Scholar 

  32. Orooji Y, Irani-Nezhad MH, Hassandoost R, Khataee A, Pouran SR, Joo SW (2020) Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay. Spectrochim Acta Part A: Spectrochim Acta A Mol Biomol Spectrosc 234:118272

    Article  CAS  Google Scholar 

  33. Sisi AJ, Fathinia M, Khataee A, Orooji Y (2020) Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: mechanism and ecotoxicological analysis. J Mol Liq 308:113018

    Article  CAS  Google Scholar 

  34. Haddad Irani-nezhad M, Khataee A, Hassanzadeh J, Orooji Y (2019) A chemiluminescent method for the detection of H2O2 and glucose based on intrinsic peroxidase-like activity of WS2 quantum dots. Molecules 24:689

    Article  PubMed Central  CAS  Google Scholar 

  35. Karaman C (2021) Orange peel derived-nitrogen and sulfur co‐doped carbon dots: a nano‐booster for enhancing ORR electrocatalytic performance of 3D graphene networks. Electroanalysis 33:1356–1369

    Article  CAS  Google Scholar 

  36. Karaman C, Karaman O, Atar N, Yola ML (2021) Tailoring of cobalt phosphide anchored nitrogen and sulfur co-doped three dimensional graphene hybrid: Boosted electrocatalytic performance towards hydrogen evolution reaction. Electrochim Acta 380:138262

    Article  CAS  Google Scholar 

  37. Akça A, Karaman O, Karaman C (2021) Mechanistic insights into catalytic reduction of N2O by CO over Cu-embedded graphene: a density functional theory perspective . ECS J Solid State Sci Technol 10:041003

    Article  CAS  Google Scholar 

  38. Karimi A, Vatanpour V, Khataee A, Safarpour M (2019) Contra-diffusion synthesis of ZIF-8 layer on polyvinylidene fluoride ultrafiltration membranes for improved water purification. J Ind Eng Chem 73:95–105

    Article  CAS  Google Scholar 

  39. Hassandoost R, Pouran SR, Khataee A, Orooji Y, Joo SW (2019) Hierarchically structured ternary heterojunctions based on Ce3+/Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline. J Hazard Mater 376:200–211

    Article  CAS  PubMed  Google Scholar 

  40. Karaman C, Karaman O, Atar N, Yola ML (2021) Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@carbon dots and Cd0.5Zn0.5S/d-Ti3C2Tx MXene composite for heart-type fatty acid–binding protein detection. Microchim Acta 188:1–15

    Article  CAS  Google Scholar 

  41. Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H (2018) Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta 176:208–213

    Article  CAS  PubMed  Google Scholar 

  42. Cheraghi S, Taher MA, Karimi-Maleh H (2017) Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J Food Compos Anal 62:254–259

    Article  CAS  Google Scholar 

  43. Orooji Y, Naderi Asrami P, Beitollahi H, Tajik S, Alizadeh M, Salmanpour S, Baghayeri M, Rouhi J, Sanati AL, Karimi F (2021) An electrochemical strategy for toxic ractopamine sensing in pork samples; twofold amplified nano-based structure analytical tool. J Food Meas Charact. https://doi.org/10.1007/s11694-021-00982-y

    Article  Google Scholar 

  44. Rabiee N, Safarkhani M, Rabiee M (2018) Ultra-sensitive electrochemical on-line determination of Clarithromycin based on Poly (L-Aspartic acid)/graphite oxide/pristine graphene/glassy carbon electrode. Asian J Nanosci Mater 1:63–73

    Google Scholar 

  45. Taei M, Salavati H, Fouladgar M, Abbaszadeha E (2020) Simultaneous determination of sunset yellow and tartrazine in soft drinks samples using nanocrystallites of spinel ferrite-modified electrode. Quarte J Iran Chem Commun 8:67–79

    CAS  Google Scholar 

  46. Fazal-ur-Rehman M, Qayyum I (2020) Biomedical scope of gold nanoparticles in medical sciences; an advancement in cancer therapy. J Med Chem Sci 3:399–407

    CAS  Google Scholar 

  47. Sheikhshoaie I, Rezazadeh A, Ramezanpour S (2018) Removal of Pb (II) from aqueous solution by gel combustion of a new nano sized Co3O4/ZnO composite. Asian J Nanosci Mater 1:271–281

    Google Scholar 

  48. Elobeid WH, Elbashir AA (2019) Development of chemically modified pencil graphite electrode based on benzo-18-crown-6 and multi-walled CNTs for determination of lead in water samples. Prog Chem Biochem Res 2:24–33

    Article  CAS  Google Scholar 

  49. Saeidi S, Javadian F, Sepehri Z, Shahi Z, Mousavi F, Anbari M (2016) Antibacterial effects of silver nanoparticlesagainst resistant strains of E. coli bacteria. Int J Adv Biol Biomed Res 4:96–99

    Article  CAS  Google Scholar 

  50. Shaikh UU, Tamboli Q, Pathange SM, Dahan ZA, Pudukulathan Z (2018) An efficient method for chemoselective acetylation of activated alcohols using nano ZnFe2O4 as catalyst. Chem Methodol 2:73–82

    CAS  Google Scholar 

  51. Madadi Z, Soltanieh M, Bagheri Lotfabad T, Nazari S (2019) Green synthesis of titanium dioxide nanoparticles with Glycyrrhiza glabra and their photocatalytic activity. Asian J Green Chem 4:256–268

    Google Scholar 

  52. Dehno Khalaji A, Ghorbani M, Dusek M, Eigner V (2020) The Bis (4-methoxy-2-hydroxybenzophenone) copper (II) Complex Used as a New Precursor for Preparation of CuO Nanoparticles. Chem Methodol 4:143–151

    Article  Google Scholar 

  53. Karimi F, Zakariae N, Esmaeili R, Alizadeh M, Tamadon AM (2020) Carbon nanotubes for amplification of electrochemical signal in drug and food analysis: a mini review. Curr Biochem Eng 6:114–119

    Article  Google Scholar 

  54. Karimi-Maleh H, Karimi F, Orooji Y, Mansouri G, Razmjou A, Aygun A (2020) A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci Rep 10:1–13

    Article  CAS  Google Scholar 

  55. Abo-Hamad A, AlSaadi MA, Hayyan M, Juneidi I, Hashim MA (2016) Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: a review. Electrochim Acta 193:321–343

    Article  CAS  Google Scholar 

  56. Chaudhary GR, Bansal S, Saharan P, Bansal P, Mehta SK (2013) Applications of surface modified ionic liquid/nanomaterial composite in electrochemical sensors and biosensors. Bio Nano Sci 3:241–253

    Google Scholar 

  57. Ghafour Taher S, Abdulkareem Omar K, Mohammed Faqi-Ahmed B (2019) Green and selective oxidation of alcohols using MnO2 nanoparticles under solvent-free condition using microwave irradiation. Asian J Green Chem 4:231–238

    Google Scholar 

  58. Christus AAB, Panneerselvam P, Ravikumar A, Morad N, Sivanesan S (2018) Colorimetric determination of Hg (II) sensor based on magnetic nanocomposite (Fe3O4@ ZIF-67) acting as peroxidase mimics. J Photochem PhotobiolA Chem 364:715–724

    Article  CAS  Google Scholar 

  59. Xue Y, Xiang P, Jiang Y, Lian H, Mo J, Li M (2020) Influence of Ca2+ on phosphate removal from water using a non-core-shell Fe3O4@ ZIF-67 composites. J Environ Chem Eng 8:104458

    Article  CAS  Google Scholar 

  60. Bibi S, Pervaiz E, Ali M (2021) Synthesis and applications of metal oxide derivatives of ZIF-67: a mini-review. Chem Papers 75:1–23

    Article  CAS  Google Scholar 

  61. Chen Q, Li X, Min X, Cheng D, Zhou J, Li Y, Zhang C (2017) Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode. J Electroanal Chem 789:114–122

    Article  CAS  Google Scholar 

  62. Xiao X, Peng S, Wang C, Cheng D, Li N, Dong Y, Li X (2019) Metal/metal oxide@ carbon composites derived from bimetallic Cu/Ni-based MOF and their electrocatalytic performance for glucose sensing. J Electroanal Chem 841:94–100

    Article  CAS  Google Scholar 

  63. Jiang Y, Cheng G, Li Y, He Z, Zhu J, Meng W, Wang L (2021) Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@ C from metal-organic framework. Chem Eng J 415:129014

    Article  CAS  Google Scholar 

  64. Yantasee W, Lin Y, Fryxell GE, Busche BJ (2004) Simultaneous detection of cadmium, copper, and lead using a carbon paste electrode modified with carbamoylphosphonic acid self-assembled monolayer on mesoporous silica (SAMMS). Anal Chim Acta 502:207–212

    Article  CAS  Google Scholar 

  65. Payehghadr M, Adineh Salarvand S, Nourifard F, Rofouei MK, Bahramipanah N (2019) Construction of modified carbon paste electrode by a new pantazene ligand for ultra-trace determination of ion silver in real samples. Adv J Chem Section A 2:377–385

    CAS  Google Scholar 

  66. Zheng J, Zhou X (2007) Sodium dodecyl sulfate-modified carbon paste electrodes for selective determination of dopamine in the presence of ascorbic acid. Bioelectrochemistry 70:408–415

    Article  CAS  PubMed  Google Scholar 

  67. Abbaspour A, Moosavi SMM (2002) Chemically modified carbon paste electrode for determination of copper (II) by potentiometric method. Talanta 56:91–96

    Article  CAS  PubMed  Google Scholar 

  68. Cesarino I, Marino G, do Rosário Matos J, Cavalheiro ETG (2008) Evaluation of a carbon paste electrode modified with organofunctionalised SBA-15 nanostructured silica in the simultaneous determination of divalent lead, copper and mercury ions. Talanta 75:15–21

    Article  CAS  PubMed  Google Scholar 

  69. Karimi-Maleh H, Arotiba OA (2020) Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J Colloid Interface Sci 560:208–212

    Article  CAS  PubMed  Google Scholar 

  70. Opallo M, Lesniewski A (2011) A review on electrodes modified with ionic liquids. J Electroanal Chem 656:2–16

    Article  CAS  Google Scholar 

  71. Bard AJ, Faulkner LR (2001) Fundamentals and applications. Electrochemical methods. pp 580–632

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Tajik.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahsavari, M., Tajik, S., Sheikhshoaie, I. et al. Fabrication of Nanostructure Electrochemical Sensor Based on the Carbon Paste Electrode (CPE) Modified With Ionic Liquid and Fe3O4/ZIF-67 for Electrocatalytic Sulfamethoxazole Detection. Top Catal 65, 577–586 (2022). https://doi.org/10.1007/s11244-021-01471-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01471-8

Keywords