Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Electrochemical sensing of dopamine using a Ni-based metal-organic framework modified electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A Ni-based metal-organic framework (Ni-MOF) modified electrode was fabricated for electrochemical detection of dopamine. The Ni-MOF was synthesized by ionothermal synthesis method using an ionic liquid as a template. The morphology and composition of the Ni-MOF were characterized by scanning electron microscope, X-ray diffraction, thermogravimetric analysis, and attenuated total reflection Fourier transform infrared spectroscopy. Electrochemical responses of the Ni-MOF modified electrode toward dopamine were performed using differential pulse voltammetry. The electrochemical sensing performance of the Ni-MOF modified electrode toward dopamine was improved by the introduction of ionic liquid with a wide linear range (0.2–100 μmol L−1), and a low detection limit (60 nmol L−1). Further studies indicated that the modified electrode exhibited great selectivity to dopamine in complex mixtures, and the Ni-MOF modified electrode also has excellent stability and reproducibility. Moreover, the analysis of real samples confirmed that the modified electrode has a certain reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Guillerm V, Kim D, Eubank JF, Luebke R, Liu XF, Adil K, Lah MS, Eddaoudi M (2014) A supermolecular building approach for the design and construction of metal-organic frameworks. Chem Soc Rev 43:6141–6172

    Article  CAS  Google Scholar 

  2. Yang SJ, Kim T, Im JH, Kim YS, Jung H, Park CR (2012) MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem Mater 24:464–470

    Article  CAS  Google Scholar 

  3. Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428

    Article  CAS  Google Scholar 

  4. Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM (2010) Multiple functional groups of varying ratios in metal-organic frameworks. Science 327:846–850

    Article  CAS  Google Scholar 

  5. Camille P, Bandosz TJ (2012) Exploring the coordination chemistry of MOF-graphite oxide composites and their applications as adsorbents. Dalton Trans 41:4027–4035

    Article  Google Scholar 

  6. Xia W, Mahmood A, Zou R, Xu Q (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 87:1837–1866

    Article  Google Scholar 

  7. Brouzgou A, Gorbova E, Wang Y, Jing S, Seretis A, Liang Z, Tsiakaras P (2019) Nitrogen-doped 3D hierarchical ordered mesoporous carbon supported palladium electrocatalyst for the simultaneous detection of ascorbic acid, dopamine, and glucose. Ionics 25:6061–6070

    Article  CAS  Google Scholar 

  8. Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932

    Article  CAS  Google Scholar 

  9. Horike S, Umeyama D, Kitagawa S (2013) Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. Accounts Chem Res 46:2376–2384

    Article  CAS  Google Scholar 

  10. Yabushita M, Li P, Bernales V, Kobayashi H, Fukuoka A, Gagliardi L, Farha OK, Katz A (2016) Unprecedented selectivity in molecular recognition of carbohydrates by a metal–organic framework. Chem Commun 52:7094–7097

    Article  CAS  Google Scholar 

  11. Li JR, Ryan KJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504

    Article  CAS  Google Scholar 

  12. Sun Y, Li Y, Wang N, Xu QQ, Xu L, Lin M (2018) Copper-based metal-organic framework for non-enzymatic electrochemical detection of glucose. Electroanal. 30:474–478

    Article  CAS  Google Scholar 

  13. Yi FY, Chen DX, Wu MK, Han L, Jiang HL (2016) Chemical sensors based on metal-organic frameworks. Chempluschem 81:675–690

    Article  CAS  Google Scholar 

  14. Dang W, Sun Y, Jiao H, Xu L, Lin M (2020) AuNPs-NH2/Cu-MOF modified glassy carbon electrode as enzyme-free electrochemical sensor detecting H2O2. J Electroanal Chem 856:113592

    Article  CAS  Google Scholar 

  15. Lopa NS, Rahman MM, Ahmed F, Sutradhar SC, Ryu T, Kim W (2018) A Ni-based redox-active metal-organic framework for sensitive and non- enzymatic detection of glucose. J Electroanal Chem 822:43–49

    Article  CAS  Google Scholar 

  16. Arul P, John SA (2018) Size controlled synthesis of Ni-MOF using polyvinylpyrrolidone: new electrode material for the trace level determination of nitrobenzene. J Electroanal Chem 829:168–176

    Article  CAS  Google Scholar 

  17. Dai H, Chen D, Li Y, Cao P, Wang N, Lin M (2018) Voltammetric sensing of dopamine based on a nanoneedle array consisting of NiCo2S4 hollow core-shells on a nickel foam. Microchim Acta 185:157

    Article  Google Scholar 

  18. Beitollahi H, Dourandish Z, Ganjali MR, Shaker S (2018) Voltammetric determination of dopamine in the presence of tyrosine using graphite screen-printed electrode modified with graphene quantum dots. Ionics 24:4023–4031

    Article  CAS  Google Scholar 

  19. Wang D, Xu F, Hu J, Lin M (2017) Phytic acid/graphene oxide nanocomposites modified electrode for electrochemical sensing of dopamine. Mater Sci Eng C 71:1086–1089

    Article  CAS  Google Scholar 

  20. Xu L, Yan S, Choi EY, Lee JY, Kwon YU (2009) Product control by halide ions of ionic liquids in the ionthermal syntheses of Ni–(H)BTC metal–organic frameworks. Chem Commun 23:3431–3433

    Article  Google Scholar 

  21. Michael B, Devaraj M, Kathavarayan T, Pundlik RB, Duraisamy S, Sellappan S (2017) A bioinspired ionic liquid tagged cobalt-salophen complex for nonenzymatic detection of glucose. Biosens Bioelectron 91:380–387

    Article  Google Scholar 

  22. Rao HB, Zhang ZY, Ge HW, Liu X, Zou P, Wang XX, Wang YY (2017) Enhanced amperometric sensing using a NiCo2O4/nitrogen-doped reduced graphene oxide/ionic liquid ternary composite for enzyme-free detection of glucose. New J Chem 41:3667–3676

    Article  CAS  Google Scholar 

  23. Wang CH, Yang CH, Chang JK (2017) High-selectivity electrochemical non-enzymatic sensors based on graphene/Pd nanocomposites functionalized with designated ionic liquids. Biosens Bioelectron 89:483–488

    Article  CAS  Google Scholar 

  24. Pamham ER, Morris RE (2006) 1-Alkyl-3-methyl imidazolium bromide ionic liquids in the ionothermal synthesis of aluminium phosphate molecular sieves. Chem Mater 18:4882–4887

    Article  Google Scholar 

  25. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  CAS  Google Scholar 

  26. Zhang YD, Lin BP, Sun Y, Zhang XQ, Yang H, Wang JC (2015) Carbon nanotubes@metal–organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage. RSC Adv 5:58100–58106

    Article  CAS  Google Scholar 

  27. Wang QH, Wang QX, Xu BY, Gao F, Zhao C (2018) Flower-shaped multiwalled carbon nanotubes@nickel-trimesic acid MOF composite as a high-performance cathode material for energy storage. Electrochim Acta 281:69–77

    Article  CAS  Google Scholar 

  28. Yoshida Y, Fujie K, Lim DW, Ikeda R, Kitagawa H (2019) Superionic conduction over a wide temperature range in a metal-organic framework impregnated with ionic liquids. Angew Chem Int Ed 58:1–6

    Article  Google Scholar 

  29. Tong M, Dong S, Wang K, Suo G (2017) A porphyrin MOF and ionic liquid biocompatible matrix for the direct electrochemistry and electrocatalysis of cytochrome c. J Electrochem Soc 164:B200–B204

    Article  CAS  Google Scholar 

  30. Dong S, Li N, Suo G, Huang T (2013) Inorganic/organic doped carbon aerogels as biosensing materials for the detection of hydrogen peroxide. Anal Chem 85:11739–11746

    Article  CAS  Google Scholar 

  31. Perumal M, Annadurai T, Venkatachlam R, Noel N, Vembu S (2019) Enhanced electrocatalytic activity of Ni-CNT nanocomposites for simultaneous determination of epinephrine and dopamine. Electroanalysis. 31:2387–2396

    Article  Google Scholar 

  32. Vinoth S, Ramaraj R, Pandikumar A (2020) Facile synthesis of calcium stannate incorporated graphitic carbon nitride nanohybrid materials: a sensitive electrochemical sensor for determining dopamine. Mater Chem Phys 245:122743

    Article  CAS  Google Scholar 

  33. Yao WQ, Guo H, Lin H, Li Q, Xue R, Wu N, Li L, Wang MY, Wu Y (2019) Simultaneous electrochemical determination of acetaminophen and dopamine based on metal-organic framework/multiwalled carbon nanotubes-Au@Ag nanocomposites. J Electrochem Soc 166:B1258–B1267

    Article  Google Scholar 

  34. Li J, Xia JF, Zhang FF, Wang ZH, Lin QY (2018) A novel electrochemical sensor based on copper-based metal-organic framework for the determination of dopamine. J Chin Chem Soc 65:743–749

    Article  CAS  Google Scholar 

  35. Qiu ZW, Yang T, Guo R, Jie GF, Hou WG (2019) An electrochemical ratiometric sensor based on 2D MOF nanosheet/Au/polyxanthurenic acid composite for detection of dopamine. J Electroanal Chem 835:123–129

    Article  CAS  Google Scholar 

  36. Gao LL, Sun WJ, Yin XM, Bu R, Gao EQ (2019) Graphite paste electrodes modified with a sulfo-functionalized metal-organic framework (type MIL-101) for voltammetric sensing of dopamine. Microchim Acta 186:762

    Article  CAS  Google Scholar 

  37. Duan CQ, Zheng JB (2019) Bimetallic MOF-based enzyme-free sensor for highly sensitive and selective detection of dopamine. J Electrochem Soc 166:B942–B947

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Young Scholars Program of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Lin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 762 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Zhang, L., Cao, P. et al. Electrochemical sensing of dopamine using a Ni-based metal-organic framework modified electrode. Ionics 27, 1339–1345 (2021). https://doi.org/10.1007/s11581-020-03857-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03857-2

Keywords