Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Two-phase air-water flows: Scale effects in physical modeling

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Physical modeling represents probably the oldest design tool in hydraulic engineering together with analytical approaches. In free surface flows, the similitude based upon a Froude similarity allows for a correct representation of the dominant forces, namely gravity and inertia. As a result fluid flow properties such as the capillary forces and the viscous forces might be incorrectly reproduced, affecting the air entrainment and transport capacity of a high-speed model flow. Small physical models operating under a Froude similitude systematically underestimate the air entrainment rate and air-water interfacial properties. To limit scale effects, minimal values of Reynolds or Weber number have to be respected. The present article summarizes the physical background of such limitations and their combination in terms of the Morton number. Based upon a literature review, the existing limits are presented and discussed, resulting in a series of more conservative recommendations in terms of air concentration scaling. For other air-water flow parameters, the selection of the criteria to assess scale effects is critical because some parameters (e.g., bubble sizes, turbulent scales) can be affected by scale effects, even in relatively large laboratory models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BRADLEY J. N. Study of air injection into the flow in the boulder dam spillway tunnels[R]. Hydraulic Laboratory Report 186, USBR, Denver Co., 1945.

    Google Scholar 

  2. CHANSON H. Air bubble entrainment in free-surface turbulent shear flows[M]. London, UK: Academic Press, 1997.

    Google Scholar 

  3. BOES R. M. (MINOR H. E., HAGER W. H. eds.). Scale effects in modelling two-phase stepped spill-way flow (Hydraulics of stepped spillways)[M]. Rotterdam, The Netherlands: A. A. Balkema, 2000, 53–60.

  4. PFISTER M., CHANSON H. Discussion to scale effects in physical hydraulic engineering models[J]. Journal of Hydraulic Research, 2012, 50(2): 244–246.

    Article  Google Scholar 

  5. CHANSON H. Hydraulics of aerated flows: Qui Pro Quo?[J]. Journal of Hydraulic Research, 2013, 51(3): 223–243.

    Article  Google Scholar 

  6. PFISTER M., HAGER W. H. History and significance of the Morton number in hydraulic engineering[J]. Journal of Hydraulic Engineering, 2014, 140(5): 02514001.

    Article  Google Scholar 

  7. SCHMIDT E. Ähnlichkeitstheorie der Bewegung von Flüssigkeitsgasgemsichen (similarity theory of motion in fluid-gas mixtures)[R]. Forschungsheft 365, 1–3, VDI-Verlag, Berlin, 1934(in German).

    Google Scholar 

  8. HABERMAN W. L., MORTON R. K. An experimental study on bubbles moving in liquids[J]. Transactions of the American Society of Civil Engineers, 1956, 121(1): 227–250.

    Google Scholar 

  9. COMOLET R. Sur le mouvement d’une bulle de gaz dans un liquide (gas bubble motion in a liquid medium)[J]. La Houille Blanche, 1979, (1): 31–42(in French).

    Article  Google Scholar 

  10. RAO N. S. L., KOBUS H. E. and BARCZEWSKI B. H. Characteristics of self-aerated free-surface flows[M]. Berlin, Germany: E. Schmidt Verlag, 1975.

    Google Scholar 

  11. WOOD I. R. Air entrainment in free-surface flows. IAHR hydraulic structures design manual 4[M]. Rotterdam, The Netherlands: A. A. Balkema, 1991.

    Google Scholar 

  12. NOVAK P., CABELKA J. Models in hydraulic engineering. physical principles and design applicatio-ns[M]. London, UK: Pitman Publication, 1981.

    Google Scholar 

  13. CHANSON H. (CHANSON H. eds.) Physical modelling of hydraulics (Hydraulics of open channel flow: An introduction)[M]. 1st edition, London, UK: Edward Arnold, 1999, 261–283.

  14. CHANSON H. Turbulent air-water flows in hydraulic structures: Dynamic similarity and scale effects[J]. Environmental Fluid Mechanics, 2009, 9(2): 125–142.

    Article  MathSciNet  Google Scholar 

  15. PFISTER M., HAGER W. H. Chute aerators I: Air transport characteristics[J]. Journal of Hydraulic Engineering, ASCE, 2010, 136(6): 352–359.

    Article  Google Scholar 

  16. PFISTER M., HAGER W. H. Chute aerators Ii: Hydraulic design[J]. Journal of Hydraulic Engineering, ASCE, 2010, 136(6): 360–367.

    Article  Google Scholar 

  17. CHANSON H., CHACHEREAU Y. Scale effects affe-cting two-phase flow properties in hydraulic jump with small inflow Froude number[J]. Experimental The-rmal and Fluid Science, 2013, 45: 234–242.

    Article  Google Scholar 

  18. SCHULTZ M. P., FLACK K. A. Reynolds-number scaling of turbulent channel flow[J]. Physics of Fluids, 2013, 25(2): 025104.

    Article  Google Scholar 

  19. CHANSON H. Environmental hydraulics of open channel flows[M]. Oxford, UK: Elsevier Butterworth-Heinemann, 2004, 483.

    Google Scholar 

  20. BARENBLATT G. I. Scaling, self-similarity, and in-termediate asymptotics[M]. Cambridge, UK: Cambridge University Press, 1996, 386.

    Book  Google Scholar 

  21. FOSS J., PANTON R. and YARIN A. (TROPEA C., YARIN A. and FOSS J. eds.). Nondimensional representation of the boundary-value problem (Experime-ntal fluid mechanics)[M]. Berlin, Germany: Springer, 2007, 33–83.

  22. FELDER S., CHANSON H. Turbulence, dynamic simi-larity and scale effects in high-velocity free-surface flows above a stepped chute[J]. Experiments in Fluids, 2009, 47(1): 1–18.

    Article  Google Scholar 

  23. WOOD I. R. Air entrainment in high speed flows[C]. Proceedings International Symposium Scale Effects in Modelling Hydraulic Structures, IAHR. Esslingen, Germany, 1984.

    Google Scholar 

  24. CHANSON H. (GUALTIERI C., MIHAILOVIC D. T. eds.). Advective diffusion of air bubbles in turbulent water flows (Fluid mechanics of environmental interfaces)[M]. Leiden, The Netherlands: Taylor and Francis, 2008, 163–196.

  25. KELLER R. J. Field measurement of self-aerated high speed open channel flow[D]. Doctoral Thesis, Christ-church, New Zealand: University of Canterbury, 1972.

    Google Scholar 

  26. CAIN P. Measurements within self-aerated flow on a large spillway[D]. Doctoral Thesis, Christchurch, New Zealand: University of Canterbury, 1978.

    Google Scholar 

  27. LIN K., HAN L. Stepped spillway for dachaoshan Rcc dam[C]. Proceedings 29th Iahr Biennial Congress, Special Seminar. Beijing, China, 2001, 88–93.

    Google Scholar 

  28. KOBUS H. (KOBUS H. ed.). Local air entrainment and detrainment (Symp. scale effects in modelling hydraulic structures)[M]. Esslingen: Technische Akademie, 1984, 1–10.

  29. KOSCHITZKY H.-P. Dimensionierungskonzept für Sohlbelüfter in Schussrinnen zur Vermeidung von Kavitationsschäden (Design concept for chute aerators to avoid cavitation damage)[R]. Mitteilung 65. Institut für Wasserbau, TU: Stuttgart, 1987(in German).

    Google Scholar 

  30. RUTSCHMANN P. (VISCHER D.ed.). Belüftungsein-bauten in Schussrinnen (Chute aerators) (Mitteilung 97. laboratory of hydraulics, hydrology and glaciology)[M]. Eth: Zurich, 1988(in German).

  31. SKRIPALLE J. Zwangsbelüftung von Hochgeschwin-digkeitsströmungen an zurückspringenden Stufen im Wasserbau (forced aeration of high-speed flows at chute aerators)[R]. Mitteilung 124. Technische Universität, Berlin, 1994(in German).

    Google Scholar 

  32. CHANSON H. Understanding air-water mass transfer in rectangular dropshafts[J]. Journal of Environmental Engineering and Science, 2004, 3(5): 319–330.

    Article  Google Scholar 

  33. CHANSON H., AOKI S. and HOQUE A. Physical modelling and similitude of air bubble entrainment at vertical circular plunging jets[J]. Chemical Engineering Science, 2004, 59(4): 747–754.

    Article  Google Scholar 

  34. CHANSON H., GONZALEZ C. A. Physical modelling and scale effects of air-water flows on stepped spillwa-ys[J]. Journal of Zhejiang University Science, 2005, 6A(3): 243–250.

    Article  Google Scholar 

  35. MURZYN F., CHANSON H. Experimental assessment of scale effects affecting two-phase flow properties in hydraulic jumps[J]. Experiments in Fluids, 2008, 45(3): 513–521.

    Article  Google Scholar 

  36. FELDER S. Air-water flow properties on stepped spillways for embankment dams: Aeration, energy dissipation and turbulence on uniform, non-uniform and pooled stepped chutes[D]. Doctoral Thesis, Brisbane, Australia: The University of Queensland, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Pfister.

Additional information

Biography: PFISTER Michael (1976-), Male, Ph. D., Research and Teaching Associate

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfister, M., Chanson, H. Two-phase air-water flows: Scale effects in physical modeling. J Hydrodyn 26, 291–298 (2014). https://doi.org/10.1016/S1001-6058(14)60032-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1001-6058(14)60032-9

Key words