Abstract
In this paper it will be shown that the Beth definability property corresponds to surjectiveness of epimorphisms in abstract algebraic logic. This generalizes a result by I. Németi (cf. [11, Theorem 5.6.10]). Moreover, an equally general characterization of the weak Beth property will be given. This gives a solution to Problem 14 in [20]. Finally, the characterization of the projective Beth property for varieties of modal algebras by L. Maksimova (see [15]) will be shown to hold for the larger class of semantically algebraizable logics.
Similar content being viewed by others
References
AndrÉka, H., Á. Kurucz, I. NÉmeti, and I. Sain, 'Methodolgy of applying algebraic logic to logic', in: M. Nivat, C. Rattray, and T. Rus (eds.), Algebraic Methodology and Software Technology (AMAST'93), Workshops in Computing, pages 7-28. Springer-Verlag, 1994. Extended version appeared in the Proceedings of the Summer School of Algebraic Logic 1994.
Beth, E. W., 'On Padoa's method in the theory of definition', Nederl. Akad. Welensch. Proc. Ser. A. 56 = Indagationes Math. 15: 330-339, 1953.
Barwise, J., and S. Feferman (eds.), Model-Theoretic Logics, New York, Springer-Verlag, 1985.
Blok, W. J., and D. Pigozzi, 'Algebraizable logics', Memoirs of the American Mathematical Society 77, 396: vi 78 pp., 1989.
Blok, W. J., and D. Pigozzi, 'Algebraic semantics for universal Horn logic without equality', in: J. D. H. Smith and A. Romanowska (eds.), Universal Algebra and Quasigroup Theory (Proc, Conf, Jadwisin, Poland, May 23–28, 1989), volume 19 of Research and Exposition in Mathematics, pages 1-56, Berlin, Heldermann Verlag, 1992.
Chang, C., and H. Keisler, Model Theory, volume 73 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, third edition, 1990.
Czelakowski, J., and D. Pigozzi, 'Amalgamation and interpolation in abstract algebraic logic', in: X. Caicedo and C. H. Montenegro (eds.), Models, Algebras and Proofs, volume 203 of Lecture Notes in Pure and Applied Matehmatics Series, pages 187-265, New York and Basel, Marcel Dekker, 1998.
Font, J. M., and R. Jansana, 'On the sentential logics associated with strongly nice and semi-nice general logics', Bulletin of the IGPL 2: 5-67, 1994.
Font, J. M., R. Jansana, and D. Pigozzi (eds.), Workshop on Abstract Algebraic Logic, vol. 10 of Quaderns, Bellaterra (Barcelona), 1998, Centre de Recerca Matemàtica.
Friedman, H. M., 'Beth's theorem in cardinality logics', Israel Journal of Mathematics 14: 205-212, 1973.
Henkin, L., J. D. Monk, and A. Tarski, Cylindric Algebras. Parls I & II, North-Holland, Amsterdam, 1971 & 1985.
Hoogland, E., 'Algebraic characterizations of two Beth definability properties', Master thesis, University of Amsterdam, 1996.
L. Maksimova, 'The Beth properties, interpolationa and amalgamability in varicties of modal algebras', Soviet Math. Dokl. 44(1): 327-331, 1992.
Maksimova, 'Definability and interpolation in classical modal logics', Contemporary Mathematics 131(3): 583-599, 1992.
Maksimova, L., 'On the Beth definability properties in varieties of modal algebras', in [9], pages 109-115.
NÉmeti, I., and H. AndrÉka, 'General algebraic logic: a perspective on “What is logic”', in D. M. Gabbay (ed.), What Is a Logical System, pages 393-444, Clarendron Press, Oxford, 1994.
NÉmeti, I., 'Beth definability is equivalent with surjectiveness of epis in general algebraic logic', Technical report, Math, Inst. Hungar, Acad. Sci., Budapest, 1984.
Padoa, A., 'Théorie algébrique des nombres entiers, précédé d'une introduction logique à une théorie déductive quelconque', in le Congrès International de Philosophie (1900 Paris), volume 3, pages 309-365, 1900.
Sain, I., 'Strong amalgamation and epimorphisms of cylindric algebras and Boolean algebras with operators', Preprint 17/1984, Math. Inst. Hungar. Acad. Sci., Budapest, 1984 (to appear in Studia Logica).
Sain, I., 'Beth's and Craig's properties via epimorphisms and amalgamation in algebraic logic', in: C. H. Bergman, R. D. Maddux, and D. Pigozzi (eds.), Algebraic Logic and Universal Algebra in Computer Science, volume 24 of Lecture Notes in Computer Science, pages 209-226, Springer-Verlag, Berlin, Heidelberg, New York, 1990.
Sain, I., 'On characterizations of definability properties in abstract algebraic logic', in [9], pages 162-175.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hoogland, E. Algebraic Characterizations of Various Beth Definability Properties. Studia Logica 65, 91–112 (2000). https://doi.org/10.1023/A:1005295109904
Issue Date:
DOI: https://doi.org/10.1023/A:1005295109904