Abstract
Prediction of the binding mode of a ligand (a drug molecule) to its macromolecular receptor, or molecular docking, is an important problem in rational drug design. We have developed a new docking method in which a non-conventional Monte Carlo (MC) simulation technique is employed. A computer program, MCDOCK, was developed to carry out the molecular docking operation automatically. The current version of the MCDOCK program (version 1.0) allows for the full flexibility of ligands in the docking calculations. The scoring function used in MCDOCK is the sum of the interaction energy between the ligand and its receptor, and the conformational energy of the ligand. To validate the MCDOCK method, 19 small ligands, the binding modes of which had been determined experimentally using X-ray diffraction, were docked into their receptor binding sites. To produce statistically significant results, 20 MCDOCK runs were performed for each protein–ligand complex. It was found that a significant percentage of these MCDOCK runs converge to the experimentally observed binding mode. The root-mean-square (rms) of all non-hydrogen atoms of the ligand between the predicted and experimental binding modes ranges from 0.25 to 1.84 Å for these 19 cases. The computational time for each run on an SGI Indigo2/R10000 varies from less than 1 min to 15 min, depending upon the size and the flexibility of the ligands. Thus MCDOCK may be used to predict the precise binding mode of ligands in lead optimization and to discover novel lead compounds through structure-based database searching.
Similar content being viewed by others
References
Blundell, T.L., Nature, 384 (1996) 23.
Ewing, T.J.A. and Kuntz, I.D., J. Comput. Chem., 18 (1997) 1175.
Gschwend, D.A., Good, A.C. and Kuntz, I.D., J. Mol. Recogn., 9 (1996) 175.
Jones, G. and Willett, P., Curr. Opin. Biotechnol., 6 (1995) 652.
Kuntz, I.D., Science, 257 (1992) 1078.
Villar, H.O. and Koehler, R.T., The Molecular Modeling e-conference, 1 (1997) 23.
Shoichet, B.K. and Kuntz, I.D., Protein Eng., 6 (1993) 223.
Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.
Fischer, D., Lin, S.L., Wolfson, H.L. and Nussinov, R., J.Mol. Biol., 248 (1995) 459.
Goodsell, D.S. and Olson, A.J., Proteins Struct. Funct. Genet., 8 (1990) 195.
Goodsell, D.S., Morris, G.M. and Olson, A.J., J. Mol. Recogn., 9 (1996) 1.
Pang, Y.-P. and Kozikowski, A.P., J. Comput.-Aided Mol. Design, 8 (1994) 669.
Pang, Y.-P. and Kozikowski, A.P., J. Comput.-Aided Mol. Design, 8 (1994) 683.
Tomioka, N. and Itai, A., J. Comput.-Aided Mol. Design, 8 (1994) 347.
Mizutani, M.Y., Tomioka, N. and Itai, A., J. Mol. Biol., 243 (1994) 310.
Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 207 (1997) 727.
Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 593.
Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994), 243.
DeWitte, R.S. and Shakhnovich, E.I., J. Am. Chem. Soc., 118 (1996) 11733.
Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.
Miller, M.D., Kearsley, S.K., Underwood, D.J. and Sheridan, R.P., J. Comput.-Aided Mol. Design, 8 (1994) 153.
Caflisch, A., Fischer, S. and Karplus, M., J. Comput. Chem., 18 (1997) 723.
Caflisch, A., Niederer, P. and Anliker, M., Proteins Struct. Funct. Genet., 13 (1992) 223.
Hart, T.N. and Read, R.J., Proteins Struct. Funct. Genet., 13 (1992) 206.
Yue, S.-Y., Protein Eng., 4 (1990) 177.
Oshiro, C.M., Kuntz, I.D. and Dixon, J.S., J. Comput.-Aided Mol. Design, 9 (1995) 113.
Nicklaus, M.C., Wang, S., Driscoll, J.S. and Milne, G.W. Bioorg. Med. Chem., 3 (1995) 411.
Makino, S. and Kuntz, I.D., J. Comput. Chem., 18 (1997) 1812.
Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J. Comput. Chem., 4 (1983) 187.
Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta Jr., S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.
Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.
PDB. The Protein Data Bank web site is http://www.pdb.bnl.gov.
Allen, F.H., Davies, J.E., Galloy, J.J., Johnson, O., Kennard, O., Macrae, C.F., Mitchell, E.M., Mitchel, G.E., Smith, J.M. and Watson, D.G., J. Chem. Inf. Comput. Sci., 31 (1991) 187.
Pearlman, R.S., Chem. Des. Autom. News, 2 (1987) 1.
Gasteiger, J., Rudolph, C. and Sadowski, J, Tetrahedron Comput. Methodol., 3 (1990) 537.
QUANTA is a product of Molecular Simulation, Inc., San Diego, CA.
Metropolis, N. and Ulam, S., J. Am. Stat. Assoc., 44 (1949) 335.
Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford University Press, Oxford, 1990, pp. 146–152.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Liu, M., Wang, S. MCDOCK: A Monte Carlo simulation approach to the molecular docking problem. J Comput Aided Mol Des 13, 435–451 (1999). https://doi.org/10.1023/A:1008005918983
Issue Date:
DOI: https://doi.org/10.1023/A:1008005918983