Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

MCDOCK: A Monte Carlo simulation approach to the molecular docking problem

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Prediction of the binding mode of a ligand (a drug molecule) to its macromolecular receptor, or molecular docking, is an important problem in rational drug design. We have developed a new docking method in which a non-conventional Monte Carlo (MC) simulation technique is employed. A computer program, MCDOCK, was developed to carry out the molecular docking operation automatically. The current version of the MCDOCK program (version 1.0) allows for the full flexibility of ligands in the docking calculations. The scoring function used in MCDOCK is the sum of the interaction energy between the ligand and its receptor, and the conformational energy of the ligand. To validate the MCDOCK method, 19 small ligands, the binding modes of which had been determined experimentally using X-ray diffraction, were docked into their receptor binding sites. To produce statistically significant results, 20 MCDOCK runs were performed for each protein–ligand complex. It was found that a significant percentage of these MCDOCK runs converge to the experimentally observed binding mode. The root-mean-square (rms) of all non-hydrogen atoms of the ligand between the predicted and experimental binding modes ranges from 0.25 to 1.84 Å for these 19 cases. The computational time for each run on an SGI Indigo2/R10000 varies from less than 1 min to 15 min, depending upon the size and the flexibility of the ligands. Thus MCDOCK may be used to predict the precise binding mode of ligands in lead optimization and to discover novel lead compounds through structure-based database searching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blundell, T.L., Nature, 384 (1996) 23.

    Google Scholar 

  2. Ewing, T.J.A. and Kuntz, I.D., J. Comput. Chem., 18 (1997) 1175.

    Google Scholar 

  3. Gschwend, D.A., Good, A.C. and Kuntz, I.D., J. Mol. Recogn., 9 (1996) 175.

    Google Scholar 

  4. Jones, G. and Willett, P., Curr. Opin. Biotechnol., 6 (1995) 652.

    Google Scholar 

  5. Kuntz, I.D., Science, 257 (1992) 1078.

    Google Scholar 

  6. Villar, H.O. and Koehler, R.T., The Molecular Modeling e-conference, 1 (1997) 23.

    Google Scholar 

  7. Shoichet, B.K. and Kuntz, I.D., Protein Eng., 6 (1993) 223.

    Google Scholar 

  8. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    Google Scholar 

  9. Fischer, D., Lin, S.L., Wolfson, H.L. and Nussinov, R., J.Mol. Biol., 248 (1995) 459.

    Google Scholar 

  10. Goodsell, D.S. and Olson, A.J., Proteins Struct. Funct. Genet., 8 (1990) 195.

    Google Scholar 

  11. Goodsell, D.S., Morris, G.M. and Olson, A.J., J. Mol. Recogn., 9 (1996) 1.

    Google Scholar 

  12. Pang, Y.-P. and Kozikowski, A.P., J. Comput.-Aided Mol. Design, 8 (1994) 669.

    Google Scholar 

  13. Pang, Y.-P. and Kozikowski, A.P., J. Comput.-Aided Mol. Design, 8 (1994) 683.

    Google Scholar 

  14. Tomioka, N. and Itai, A., J. Comput.-Aided Mol. Design, 8 (1994) 347.

    Google Scholar 

  15. Mizutani, M.Y., Tomioka, N. and Itai, A., J. Mol. Biol., 243 (1994) 310.

    Google Scholar 

  16. Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 207 (1997) 727.

    Google Scholar 

  17. Böhm, H.-J., J. Comput.-Aided Mol. Design, 6 (1992) 593.

    Google Scholar 

  18. Böhm, H.-J., J. Comput.-Aided Mol. Design, 8 (1994), 243.

    Google Scholar 

  19. DeWitte, R.S. and Shakhnovich, E.I., J. Am. Chem. Soc., 118 (1996) 11733.

    Google Scholar 

  20. Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.

    Google Scholar 

  21. Miller, M.D., Kearsley, S.K., Underwood, D.J. and Sheridan, R.P., J. Comput.-Aided Mol. Design, 8 (1994) 153.

    Google Scholar 

  22. Caflisch, A., Fischer, S. and Karplus, M., J. Comput. Chem., 18 (1997) 723.

    Google Scholar 

  23. Caflisch, A., Niederer, P. and Anliker, M., Proteins Struct. Funct. Genet., 13 (1992) 223.

    Google Scholar 

  24. Hart, T.N. and Read, R.J., Proteins Struct. Funct. Genet., 13 (1992) 206.

    Google Scholar 

  25. Yue, S.-Y., Protein Eng., 4 (1990) 177.

    Google Scholar 

  26. Oshiro, C.M., Kuntz, I.D. and Dixon, J.S., J. Comput.-Aided Mol. Design, 9 (1995) 113.

    Google Scholar 

  27. Nicklaus, M.C., Wang, S., Driscoll, J.S. and Milne, G.W. Bioorg. Med. Chem., 3 (1995) 411.

    Google Scholar 

  28. Makino, S. and Kuntz, I.D., J. Comput. Chem., 18 (1997) 1812.

    Google Scholar 

  29. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M., J. Comput. Chem., 4 (1983) 187.

    Google Scholar 

  30. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta Jr., S. and Weiner, P., J. Am. Chem. Soc., 106 (1984) 765.

    Google Scholar 

  31. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A., J. Comput. Chem., 7 (1986) 230.

    Google Scholar 

  32. PDB. The Protein Data Bank web site is http://www.pdb.bnl.gov.

  33. Allen, F.H., Davies, J.E., Galloy, J.J., Johnson, O., Kennard, O., Macrae, C.F., Mitchell, E.M., Mitchel, G.E., Smith, J.M. and Watson, D.G., J. Chem. Inf. Comput. Sci., 31 (1991) 187.

    Google Scholar 

  34. Pearlman, R.S., Chem. Des. Autom. News, 2 (1987) 1.

    Google Scholar 

  35. Gasteiger, J., Rudolph, C. and Sadowski, J, Tetrahedron Comput. Methodol., 3 (1990) 537.

    Google Scholar 

  36. QUANTA is a product of Molecular Simulation, Inc., San Diego, CA.

  37. Metropolis, N. and Ulam, S., J. Am. Stat. Assoc., 44 (1949) 335.

    Google Scholar 

  38. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford University Press, Oxford, 1990, pp. 146–152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Wang, S. MCDOCK: A Monte Carlo simulation approach to the molecular docking problem. J Comput Aided Mol Des 13, 435–451 (1999). https://doi.org/10.1023/A:1008005918983

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008005918983