Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A New Version of the Price's Algorithm for Global Optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We present an algorithm for finding a global minimum of a multimodal,multivariate function whose evaluation is very expensive, affected by noise andwhose derivatives are not available. The proposed algorithm is a new version ofthe well known Price's algorithm and its distinguishing feature is that ittries to employ as much as possible the information about the objectivefunction obtained at previous iterates. The algorithm has been tested on alarge set of standard test problems and it has shown a satisfactorycomputational behaviour. The proposed algorithm has been used to solveefficiently some difficult optimization problems deriving from the study ofeclipsing binary star light curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.C.W. Dixon and G.P. Szegö (1975), Towards Global Optimization 1, North-Holland, Amsterdam.

    Google Scholar 

  2. L.C.W. Dixon and G.P. Szegö (1978), Towards Global Optimization 2, North-Holland, Amsterdam.

    Google Scholar 

  3. R.Y. Rubinstein (1981), Simulation and the Monte Carlo Method, John Wiley & Son, New York.

    Google Scholar 

  4. F. Archetti and F. Shoen (1984), A Survey on the Global Optimization Problem: General Theory and Computational Approaches, Annals of Operations Research, 1, 87–110.

    Google Scholar 

  5. A. Törn and A. Žilinskas (1989), Global Optimization, Lecture Notes in Computer Science 350, Springer-Verlag, Berlin.

    Google Scholar 

  6. A.H.G. Rinnooy Kan and G.H. Timmer (1989), Global Optimization, in G.L. Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd (eds), Optimization, North-Holland, Amsterdam.

    Google Scholar 

  7. R. Horst and H. Tuy (1990), Global Optimization, Springer Verlag, Berlin.

    Google Scholar 

  8. F. Schoen (1991), Stochastic Techniques for Global Optimization: A Survey of Recent Advances, Journal of Global Optimization, 1, 207–228.

    Google Scholar 

  9. C.A. Floudas and P.M. Pardalos (1992), Recent Advances in Global Optimization, Princeton University Press, Oxford.

    Google Scholar 

  10. R.H. Horst and P.M. Pardalos (1995), Handbook of Global Optimization, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  11. F. Barone, L. Milano and G. Russo (1990), An Optimization Method for Solutions of Close Eclipsing Binaries, in Active Close Binaries, ed. C. Ibanoglu, Kluwer Academic Publishers, Dordrecht, 161–188.

    Google Scholar 

  12. J. Nocedal (1992), Theory of Algorithms for Unconstrained Optimization, in: Acta Numerical 1992, ed. A. Iserles, Cambridge University Press, Cambridge, 199–242.

    Google Scholar 

  13. M.J.D. Powell (1992), A Direct Search Optimization Method that Models the Objective and Constraint Functions by Linear Interpolation, Numerical Analysis Reports, DAMTP 1992/NA5, Department of AppliedMathematics and Theoretical Physics, University of Cambridge, England.

    Google Scholar 

  14. J.A. Nelder and R. Mead (1965), A Simplex Method for Function Minimization, Comput. J. 7, 308–313.

    Google Scholar 

  15. W.L. Price (1978), A controlled random search procedure for global optimization, in Towards Global Optimization 2, L.C.W. Dixon and G.P. Szegö (eds.), North-Holland, Amsterdam.

    Google Scholar 

  16. F. Barone, L. Milano and G. Russo (1990), The Wilson–Price Code Handbook, Università di Napoli, Dipartimento di Scienze Fisiche.

  17. F. Barone, C. Maceroni, L. Milano and G. Russo (1988), The Optimization of the Wilson–Devinney Method: An Application to CW Cas, Astron. Astrophys. 197, 347–353.

    Google Scholar 

  18. F. Barone, L. Fiore, L. Milano and G. Russo (1993), Analysis of Contact Binary Systems: AA Ursae Majoris, V752 Centauri, AO Camelopardalis, and V677 Centauri, The Astrophysical Journal 407 237–251.

    Google Scholar 

  19. R.E. Wilson (1979), Eccentric orbit generalization and simultaneous solution of binary star light and velocity curves, The Astrophysical Journal 234, 1054–1066.

    Google Scholar 

  20. M.A. Wolfe (1978), Numerical Methods for Unconstrained Optimization, Van Nostrand Reinhold Company, New York.

    Google Scholar 

  21. S. Lucidi and M. Piccioni, Random Tunneling by Means of Acceptance-Rejection Sampling for Global Optimization, J. Optim. Theory and Appl. 62, 255–278.

  22. L. Breiman and A. Cutler (1993), A deterministic algorithm for global optimization, Mathematical Programming 58, 179–199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brachetti, P., De Felice Ciccoli, M., Di Pillo, G. et al. A New Version of the Price's Algorithm for Global Optimization. Journal of Global Optimization 10, 165–184 (1997). https://doi.org/10.1023/A:1008250020656

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008250020656