Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Assessing Probabilistic Timing Constraints on System Performance

  • Published:
Design Automation for Embedded Systems Aims and scope Submit manuscript

Abstract

We propose an algorithm for assessing probabilistic timing constraints for systems including components with uncertain delays. We make a case for designing systems based on a probabilistic relaxation of such constraints, as this has the potential for resulting in lower silicon area and/or power consumption. We consider a concrete example, an MPEG decoder, for which we discuss modeling and assessment of probabilistic throughput constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsekas, D. 1995. Dynamic Programming and Optimal Control, volume 1. Athena Scientific.

  2. Bhaskaran, V., Konstantinides, K., Lee, R., and Beck, J. 1995. Algorithmic and architectural enhancements for real-time MPEG-1 decoding on a general purpose risc workstation. IEEE Trans. Circ. & Syst. Video Tech. 5(5):380–386.

    Google Scholar 

  3. Cormen, T., Leiserson, C., and Rivest, R. 1990. Introduction to Algorithms The MIT Press.

  4. de Micheli, G. 1994. Synthesis and Optimization of Digital Ciruits. McGraw-Hill, Inc.

  5. Dembo, A., and Zeitouni, O. 1992. Large Deviations Techniques and Applications. Boston: Jones & Bartlett.

    Google Scholar 

  6. Feller, W. 1971. An Introduction to Probability Theory and Its Applications, volume 1–2. J. Wiley & Sons.

  7. Flukerson, D. 1962. Expected critical path lenghts in PERT networks. Oper. Res 10(6):808–817.

    Google Scholar 

  8. Gajski, D., Vahid, F., Narayan, S., and Gong, J. 1994. Specification and Design Of Embedded Systems. PTR Prentice Hall.

  9. Guérin, R., and Orda, A. 1996. QoS-based routing in networks with inaccurate information: theory and algorithms. IBM Research Report 20515.

  10. Gupta, R. 1995. Co-synthsis of Hardware and Software for Digital Embedded Systems. Kluwer Academic.

  11. Gupta, R., and De Micheli, G. 1993. Hardware-software cosynthesis for digital systems. IEEE Design & Test of Computers 10(3).

  12. Hsu, I., and Walrand, J. 1994. Admission control for ATM networks. Proc. IMA Workshop on Stochastic Networks.

  13. Kall, P., and Wallace, S. 1994. Stochastic Programming. John Wiley and Sons.

  14. Kavi, K., and Bukles, B. 1986. A formal definition of data flow graph models. IEEE Trans. Computers C-35(11).

  15. Kleindorfer, G. 1971. Bounding distributions for a stochastic acyclic network. Oper. Res 19:1586–1601.

    Google Scholar 

  16. Lee, W., and Kim, Y. 1995. MPEG-2 video decoding on programmable processors: computational and architectural requirements. Proc. SPIE pp. 265–287.

  17. Liu, N. 1996. MPEG decoder architecture for embedded applications. IEEE Trans. Consumer Elect. 42(4):1021–1028.

    Google Scholar 

  18. Luenberger, D. G, 1989. Linear and Nonlinear Programming. Addison-Wesley.

  19. Malcolm, D., Roseboom, J., Clark, C., and Fazar, W. 1959. Applications of a technique for R & D program evaluation. Oper. Res 7:646–669.

    Google Scholar 

  20. De Micheli, G., and Sami, M., editors. 1996. Hardware/Software Codesign. Kluwer Academic.

  21. Mitra, D., and Morrison, J. A. 1995. Multiple time scale regulation and worst case processes for ATM network control. Proc. 34th CDC pp. 353–357.

  22. Montgomery, M., and de Veciana, G. 1996. On the relevance of time scales in performance oriented traffic modeling. Proc. IEEE INFOCOM 2: 513–520.

    Google Scholar 

  23. Peixoto, H., and Jacome, M. 1997. Algorithm and architecture level design space exploration using hierarchical data flows. Proc. 11th Intern. Conf. on Application-specific Systems, Architectures and Processors pp. 71–82.

  24. Shogan, A. 1977. Bounding distributions for a stochastic PERT network. Network 7:359–381.

    Google Scholar 

  25. Van Slyke, R. 1963. Monte carlo methods and the PERT problem. Oper. Res 2:839–860.

    Google Scholar 

  26. Tongsima, S., Chantrapornchai, C., Passos, N., and Sha, E. Scheduling with confidence for probabilistic data flow graphs. Proc. IEEE Great Lakes Symposium on VLSI pp. 150–155. 1997.

  27. Wilberg, J., Ploeger, P., Camposano, R., Langevin, M., and Vierhaus, T. 1996. Codesign of hardware, software, and algorithms—a case study. Proc. IEEE Inter. Symp. Cir & Syst. 4: 552–555.

    Google Scholar 

  28. Wollmer, R. 1985. Critical path planning under uncertainty. Math. Prog. Study 25:164–171.

    Google Scholar 

  29. Zhou, T., Hu, X., and Sha, E. 1998. A probabilistic performance metric for real-time system design. Proc. 7th International Workshop on Hardware/Software Codesign, pp. 90–94.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Veciana, G., Jacome, M. & Guo, JH. Assessing Probabilistic Timing Constraints on System Performance. Design Automation for Embedded Systems 5, 61–81 (2000). https://doi.org/10.1023/A:1008991500612

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008991500612