Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pareto Simulated Annealing for Fuzzy Multi-Objective Combinatorial Optimization

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

The paper presents a metaheuristic method for solving fuzzy multi-objective combinatorial optimization problems. It extends the Pareto simulated annealing (PSA) method proposed originally for the crisp multi-objective combinatorial (MOCO) problems and is called fuzzy Pareto simulated annealing (FPSA). The method does not transform the original fuzzy MOCO problem to an auxiliary deterministic problem but works in the original fuzzy objective space. Its goal is to find a set of approximately efficient solutions being a good approximation of the whole set of efficient solutions defined in the fuzzy objective space. The extension of PSA to FPSA requires the definition of the dominance in the fuzzy objective space, modification of rules for calculating probability of accepting a new solution and application of a defuzzification operator for updating the average position of a solution in the objective space. The use of the FPSA method is illustrated by its application to an agricultural multi-objective project scheduling problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Chanas, S. (1987). “Fuzzy Optimization in Networks. ” In J. Kacprzyk and S.A. Orlovsky (eds.), Optimization Models Using Fuzzy Sets and Possibility Thoery. Dordrecht: Reidel Publishing Company, pp. 303–327.

    Google Scholar 

  • Czyżak, P. and A. Jaszkiewicz (1996). “Metaheuristic Technique for Solving Multiobjective Investment Planning Problem. ” Control and Cybernetics 25, 177–187.

    Google Scholar 

  • Czyżak, P. and A. Jaszkiewicz. (1998). “Pareto Simulated Annealing-A Metaheuristic Technique for Multiple-Objective Combinatorial Optimization. ” Journal of Multi-Criteria Decision Analysis 6(7), 34–47.

    Google Scholar 

  • Dempster, A. (1967). “Upper and Lower Probabilities Induced by a Multivalued mapping. ” Ann. Math. Statist. 38, 325–339.

    Google Scholar 

  • Dubois, D. and H. Prade. (1987). “The Mean Value of a Fuzzy Number. ” Fuzzy Sets and Systems 24, 279–300.

    Google Scholar 

  • Dubois, D., H. Prade, and R. Yager. (1997). “A Manifesto: Fuzzy Information Engineering. ” In D. Dubois, H. Prade, and R. Yager (eds.), Fuzzy Information Engineering-A Guided Tour of Application. New York: J. Wiley, pp. 1–8.

    Google Scholar 

  • Fortemps, P. (1997). “Jobshop Scheduling with Imprecise Durations: A Fuzzy Approach. ” Technical Report, Faculte Politechnique de Mons, Belgium 1997. IEEE Trans. on Fuzzy Systems.

  • Fortemps, P. and M. Roubens. (1996). “Ranking and Defuzzification Methods Based on Area Compensation. ” Fuzzy Sets and Systems 82, 319–330.

    Google Scholar 

  • Hansen, M.P. (2000). “Use of Substitute Scalarizing Functions to Guide a Local Search Based Heuristic: The Case of moTSP. ” Journal of Heuristics 6(3), 419–431.

    Google Scholar 

  • Hapke, M. (1997). “Fuzzy Multi-Objective Project Scheduling. ” Ph.D. Thesis, (in Polish).

  • Hapke, M., A. Jaszkiewicz, and R. Słowiński. (1994). “Fuzzy Project Scheduling System for Software Development. ” Fuzzy Sets and Systems 21, 101–117.

    Google Scholar 

  • Hapke, M., A. Jaszkiewicz, and R. Słowiński. (1998). “Interactive Analysis of Multiple-Criteria Project Scheduling Problem. ” Europ. J. Opl. Res. 107, 315–324.

    Google Scholar 

  • Hapke, M., A. Jaszkiewicz, and R. Słowiński. (1997). “Fuzzy Project Scheduling with Multiple-Criteria. ” In Proceedings of Sixth IEEE International Conference on Fuzzy Systems, FUZZ-IEEE'97, July 1–5, Barcelona, Spain. pp. 1277–1282.

  • Hapke, M. and R. Slowinski. (1996). “Fuzzy Priority Heuristics for Project Scheduling. ” Fuzzy Sets and Systems 83, 291–299.

    Google Scholar 

  • Jaszkiewicz, A. (1996). “Self-Adapting Metaheuristic Procedure for Multi-Objective Combinatorial Problem (in Polish). ” Zeszyty Naukowe Politechniki Şląskiej 117, 137–147.

    Google Scholar 

  • Kołodziejczyk, W. (1986). “Orlovsky's Concept of Decision Making with Fuzzy Preference Relation-Further Results. ” Fuzzy Sets and Systems 19, 11–20.

    Google Scholar 

  • Rommelfanger, H. (1990). “FULPAL: An Interactive Method Far Solving (Multiobjective) Fuzzy Linear Programming Problems, Section 5. ” In R. Slowinski and J. Teghem (eds.), Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty. Dordrecht: Kluwer Academic Publishers, pp. 279–299.

    Google Scholar 

  • Ross, T.J. (1995). Fuzzy Logic with Engineerng Applications. McGraw-Hill Inc.

  • Roubens, M. (1990). “Inequality Constraints Between Fuzzy Numbers and their Use in Mathematical Proggramming Section 7. In R. Slowinski and J. Teghem (eds.) Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty. Dordrecht: Kluwer Academic Publishers, pp. 321–330.

    Google Scholar 

  • Sakawa, M. and K. Kato. (1995). “An Interactive Fuzzy Satisficing Method for Multiobjective 0–1 Programming Problems through Revised Genetic Algorithms. ” Large Scale Systems: Theory and Applications, Preprints of the 7th IFAC/IMACS Symposium, London, UK, 11–13 July 1995, Vol. 1, pp. 457–462.

    Google Scholar 

  • Serafini, P. (1994). “Simulated Annealing for Multiple Objective Optimization Problems. ” In G.H. Tzeng, H.F. Wang, V.P. Wen, and P.L. Yu (eds.), Mutiple Criteria Decision Making. Expand and Enrich the Domains of Thinking and Application. Springer Verlag, pp. 283–292.

  • Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton, N.J.: Princeton University Press.

    Google Scholar 

  • Slany, W. (1996). “Scheduling as a Fuzzy Multiple Criteria Optimization Problem. ” Fuzzy Sets and Systems 78, 197–222.

    Google Scholar 

  • Słowiński, R., B. Soniewicki, and J. Weglarz. (1991). “MPS-Decision Support System for Multi-Objective Project Scheduling. ” Collaborative Paper IIASA, CP-91–007.

  • Ulungu, E.L. (1993). “Optimisation Combination Multicritère: Détermination de 1'ensemble des solutions efficaces et méthodes interactives. ” Ph.D. Thesis, Université de Mons-Hainaut.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hapke, M., Jaszkiewicz, A. & Słowiński, R. Pareto Simulated Annealing for Fuzzy Multi-Objective Combinatorial Optimization. Journal of Heuristics 6, 329–345 (2000). https://doi.org/10.1023/A:1009678314795

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009678314795